| Citation: | ZHAO Chuanbin, XU Weihua, LIN bo, ZHANG Tengyu, FENG Yuan, GAO Feifei. Vision Enabled Multimodal Integrated Sensing and Communications: Key Technologies and Prototype Validation[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250685 |
| [1] |
MASCHIETTI F, GESBERT D, DE KERRET P, et al. Robust location-aided beam alignment in millimeter wave massive MIMO[C]. 2017 IEEE Global Communications Conference, Singapore, Singapore, 2017: 1–6. doi: 10.1109/GLOCOM.2017.8254901.
|
| [2] |
MUPPIRISETTY L S, CHARALAMBOUS T, KAROUT J, et al. Location-aided pilot contamination avoidance for massive MIMO systems[J]. IEEE Transactions on Wireless Communications, 2018, 17(4): 2662–2674. doi: 10.1109/TWC.2018.2800038.
|
| [3] |
DESTINO G and WYMEERSCH H. On the trade-off between positioning and data rate for mm-wave communication[C]. 2017 IEEE International Conference on Communications Workshops (ICC Workshops), Paris, France, 2017: 797–802. doi: 10.1109/ICCW.2017.7962756.
|
| [4] |
GAO Jiabao, ZHONG Caijun, and ZHANG Zhaoyang. Location-aided deep learning-based channel estimation for hybrid massive MIMO systems[C]. 2021 13th International Conference on Wireless Communications and Signal Processing (WCSP), Changsha, China, 2021: 1–6. doi: 10.1109/WCSP52459.2021.9613576.
|
| [5] |
CHEN Xuhong, LU Jiaxun, LIU Shanyun, et al. Location-aided umbrella-shaped massive MIMO beamforming scheme with transmit diversity for high speed railway communications[C]. 2016 IEEE 83rd Vehicular Technology Conference (VTC Spring), Nanjing, China, 2016: 1–5. doi: 10.1109/VTCSpring.2016.7504325.
|
| [6] |
CHOWDHURY M Z, SHAHJALAL M, AHMED S, et al. 6G wireless communication systems: Applications, requirements, technologies, challenges, and research directions[J]. IEEE Open Journal of the Communications Society, 2020, 1: 957–975. doi: 10.1109/OJCOMS.2020.3010270.
|
| [7] |
CUI Yuanhao, LIU Fan, JING Xiaojun, et al. Integrating sensing and communications for ubiquitous IoT: Applications, trends, and challenges[J]. IEEE Network, 2021, 35(5): 158–167. doi: 10.1109/MNET.010.2100152.
|
| [8] |
GAO Feifei, LIN Bo, BIAN Chenghong, et al. FusionNet: Enhanced beam prediction for mmWave communications using sub-6 GHz channel and a few pilots[J]. IEEE Transactions on Communications, 2021, 69(12): 8488–8500. doi: 10.1109/TCOMM.2021.3110301.
|
| [9] |
WU Shunyao, CHAKRABARTI C, and ALKHATEEB A. LiDAR-aided mobile blockage prediction in real-world millimeter wave systems[C]. 2022 IEEE Wireless Communications and Networking Conference (WCNC), Austin, USA, 2022: 2631–2636. doi: 10.1109/WCNC51071.2022.9771651.
|
| [10] |
XU Weihua, GAO Feifei, JIN Shi, et al. 3D scene-based beam selection for mmWave communications[J]. IEEE Wireless Communications Letters, 2020, 9(11): 1850–1854. doi: 10.1109/LWC.2020.3005983.
|
| [11] |
DEMIRHAN U and ALKHATEEB A. Radar aided 6G beam prediction: Deep learning algorithms and real-world demonstration[C]. 2022 IEEE Wireless Communications and Networking Conference (WCNC), Austin, USA, 2022: 2655–2660. doi: 10.1109/WCNC51071.2022.9771564.
|
| [12] |
KLAUTAU A, GONZÁLEZ-PRELCIC N, and HEATH R W. LIDAR data for deep learning-based mmWave beam-selection[J]. IEEE Wireless Communications Letters, 2019, 8(3): 909–912. doi: 10.1109/LWC.2019.2899571.
|
| [13] |
DIAS M, KLAUTAU A, GONZÁLEZ-PRELCIC N, et al. Position and LIDAR-aided mmWave beam selection using deep learning[C]. 2019 IEEE 20th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), Cannes, France, 2019: 1–5. doi: 10.1109/SPAWC.2019.8815569.
|
| [14] |
MASHHADI M B, JANKOWSKI M, TUNG T Y, et al. Federated mmWave beam selection utilizing LIDAR data[J]. IEEE Wireless Communications Letters, 2021, 10(10): 2269–2273. doi: 10.1109/LWC.2021.3099136.
|
| [15] |
JIANG Shuaifeng, CHARAN G, and ALKHATEEB A. LiDAR aided future beam prediction in real-world millimeter wave V2I communications[J]. IEEE Wireless Communications Letters, 2023, 12(2): 212–216. doi: 10.1109/LWC.2022.3219409.
|
| [16] |
SALEHI B, REUS-MUNS G, ROY D, et al. Deep learning on multimodal sensor data at the wireless edge for vehicular network[J]. IEEE Transactions on Vehicular Technology, 2022, 71(7): 7639–7655. doi: 10.1109/TVT.2022.3170733.
|
| [17] |
CHARAN G, ALRABEIAH M, and ALKHATEEB A. Vision-aided 6G wireless communications: Blockage prediction and proactive handoff[J]. IEEE Transactions on Vehicular Technology, 2021, 70(10): 10193–10208. doi: 10.1109/TVT.2021.3104219.
|
| [18] |
XU Weihua, GAO Feifei, ZHANG Jianhua, et al. Deep learning based channel covariance matrix estimation with user location and scene images[J]. IEEE Transactions on Communications, 2021, 69(12): 8145–8158. doi: 10.1109/TCOMM.2021.3107947.
|
| [19] |
ALRABEIAH M, HREDZAK A, and ALKHATEEB A. Millimeter wave base stations with cameras: Vision-aided beam and blockage prediction[C]. 2020 IEEE 91st Vehicular Technology Conference (VTC2020-Spring), Antwerp, Belgium, 2020: 1–5. doi: 10.1109/VTC2020-Spring48590.2020.9129369.
|
| [20] |
KODA Y, NAKASHIMA K, YAMAMOTO K, et al. Handover management for mmWave networks with proactive performance prediction using camera images and deep reinforcement learning[J]. IEEE Transactions on Cognitive Communications and Networking, 2020, 6(2): 802–816. doi: 10.1109/TCCN.2019.2961655.
|
| [21] |
CHARAN G, ALRABEIAH M, and ALKHATEEB A. Vision-aided dynamic blockage prediction for 6G wireless communication networks[C]. 2021 IEEE International Conference on Communications Workshops (ICC Workshops), Montreal, Canada, 2021: 1–6. doi: 10.1109/ICCWorkshops50388.2021.9473651.
|
| [22] |
NISHIO T, OKAMOTO H, NAKASHIMA K, et al. Proactive received power prediction using machine learning and depth images for mmWave networks[J]. IEEE Journal on Selected Areas in Communications, 2019, 37(11): 2413–2427. doi: 10.1109/JSAC.2019.2933763.
|
| [23] |
KODA Y, PARK J, BENNIS M, et al. Communication-efficient multimodal split learning for mmWave received power prediction[J]. IEEE Communications Letters, 2020, 24(6): 1284–1288. doi: 10.1109/LCOMM.2020.2978824.
|
| [24] |
TIAN Yu and WANG Chenwei. Vision-aided beam tracking: Explore the proper use of camera images with deep learning[C]. 2021 IEEE 94th Vehicular Technology Conference (VTC2021-Fall), Norman, USA, 2021: 1–5. doi: 10.1109/VTC2021-Fall52928.2021.9625195.
|
| [25] |
AHN Y, KIM J, KIM S, et al. Toward intelligent millimeter and terahertz communication for 6G: Computer vision-aided beamforming[J]. IEEE Wireless Communications, 2023, 30(5): 179–186. doi: 10.1109/MWC.007.2200155.
|
| [26] |
WU Shunyao, ALRABEIAH M, CHAKRABARTI C, et al. Blockage prediction using wireless signatures: Deep learning enables real-world demonstration[J]. IEEE Open Journal of the Communications Society, 2022, 3: 776–796. doi: 10.1109/OJCOMS.2022.3162591.
|
| [27] |
DING Ruijin, XU Weihua, YUAN Wanmai, et al. Vision-aided blockage avoidance in UAV-assisted V2X communications[Z]. arXiv: 2207.12991, 2022. doi: 10.48550/arXiv.2207.12991. (查阅网上资料,请作者核对文献类型及格式是否正确).
|
| [28] |
CHARAN G, HREDZAK A, and ALKHATEEB A. Millimeter wave drones with cameras: Computer vision aided wireless beam prediction[C]. 2023 IEEE International Conference on Communications Workshops (ICC Workshops), Rome, Italy, 2023: 1896–1901. doi: 10.1109/ICCWorkshops57953.2023.10283784.
|
| [29] |
XU Weihua, ZHAO Chuanbin, and GAO Feifei. Angle domain channel-based camera pose correction for vision-aided ISAC systems[J]. IEEE Wireless Communications Letters, 2024, 13(8): 2080–2084. doi: 10.1109/LWC.2024.3401408.
|
| [30] |
CHEN Quan, ZHU Hai, YANG Lei, et al. Edge computing assisted autonomous flight for UAV: Synergies between vision and communications[J]. IEEE Communications Magazine, 2021, 59(1): 28–33. doi: 10.1109/MCOM.001.2000501.
|