Citation: | WANG Wenting, TIAN Boyan, WU Fazong, HE Yunpeng, WANG Xin, YANG Ming, FENG Dongqin. Modeling, Detection, and Defense Theories and Methods for Cyber-Physical Fusion Attacks in Smart Grid[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250659 |
[1] |
OKS S J, JALOWSKI M, LECHNER M, et al. Cyber-physical systems in the context of industry 4.0: A review, categorization and outlook[J]. Information Systems Frontiers, 2024, 26(5): 1731–1772. doi: 10.1007/s10796-022-10252-x.
|
[2] |
王鑫, 王霖, 余芸, 等. 数字孪生电网的特性、架构及应用综述[J]. 电子与信息学报, 2022, 44(11): 3721–3733. doi: 10.11999/JEIT220629.
WANG Xin, WANG Lin, YU Yun, et al. Survey on characteristics, architecture and applications of digital twin power grid[J]. Journal of Electronics & Information Technology, 2022, 44(11): 3721–3733. doi: 10.11999/JEIT220629.
|
[3] |
穆超, 王鑫, 杨明, 等. 面向物联网设备固件的硬编码漏洞检测方法[J]. 网络与信息安全学报, 2022, 8(5): 98–110. doi: 10.11959/j.issn.2096−109x.2022070.
MU Chao, WANG Xin, YANG Ming, et al. Hardcoded vulnerability detection approach for IoT device firmware[J]. Chinese Journal of Network and Information Security, 2022, 8(5): 98–110. doi: 10.11959/j.issn.2096−109x.2022070.
|
[4] |
SEMERTZIS I, ŞTEFANOV A, PRESEKAL A, et al. Power system stability analysis from cyber attacks perspective[J]. IEEE Access, 2024, 12: 113008–113035. doi: 10.1109/ACCESS.2024.3443061.
|
[5] |
GABRIEL V and PINHO C. Are clean and black energy exchange-traded funds driven by climate risk?[J]. Journal of Sustainable Finance & Investment, 2024, 1–27. doi: 10.1080/20430795.2024.2303501. (查阅网上资料,未找到本条文献卷号信息,请确认).
|
[6] |
LEHMAN G and MARAS P. Cyber-attack against ukrainian power plants. Prykarpattyaoblenergo and Kyivoblenergo[EB/OL]. https://nsarchive.gwu.edu/media/15331/ocr, 2024.
|
[7] |
Half of Ivano-Frankivsk Oblast lost power due to a hacker attack[EB/OL]. http://ru.tsn.ua/ukrayina/iz-za-hakerskoy-ataki-obestochilo-polovinu-ivano-frankovskoy-oblasti-550406.html. (查阅网上资料,未找到本条文献信息,请确认).
|
[8] |
cys-centrum: Cyber Threat Black Energy. History of attacks on Ukraine's critical IT infrastructure[EB/OL]. https://cys-centrum.com/ru/news/black_energy_2_3. (查阅网上资料,未找到本条文献信息,请确认).
|
[9] |
TATIPATRI N and ARUN S L. A comprehensive review on cyber-attacks in power systems: Impact analysis, detection, and cyber security[J]. IEEE Access, 2024, 12: 18147–18167. doi: 10.1109/ACCESS.2024.3361039.
|
[10] |
SAXENA N and GRIJALVA S. Efficient signature scheme for delivering authentic control commands in the smart grid[J]. IEEE Transactions on Smart Grid, 2018, 9(5): 4323–4334. doi: 10.1109/TSG.2017.2655014.
|
[11] |
HAIDER M Z, MALI P, RAHMAN M A, et al. Impact analysis of false data injection attacks on automatic voltage regulators of synchronous generators[C]. 2024 IEEE Power & Energy Society General Meeting, Seattle, USA, 2024: 1–5. doi: 10.1109/PESGM51994.2024.10688905.
|
[12] |
MUHAMMAD S, WIDIATKO S A, PUTRI R H, et al. Distributed Denial of Service (DDoS) attack on smart grid systems: Vulnerabilities and detection strategies[J]. Novice Research Exploration, 2024, 1(1). doi: 10.1016/j.egyr.2023.05.184. (查阅网上资料,未找到本条文献信息,请确认).
|
[13] |
ORTEGA-FERNANDEZ I, SESTELO M, BURGUILLO J C, et al. Network intrusion detection system for DDoS attacks in ICS using deep autoencoders[J]. Wireless Networks, 2024, 30(6): 5059–5075. doi: 10.1007/s11276-022-03214-3.
|
[14] |
ZHAO Zhenghui, SHANG Yingying, QI Buyang, et al. Research on defense strategies for power system frequency stability under false data injection attacks[J]. Applied Energy, 2024, 371: 123711. doi: 10.1016/j.apenergy.2024.123711.
|
[15] |
GUATO BURGOS M F, MORATO J, and VIZCAINO IMACAÑA F P. A review of smart grid anomaly detection approaches pertaining to artificial intelligence[J]. Applied Sciences, 2024, 14(3): 1194. doi: 10.3390/app14031194.
|
[16] |
GHADI Y Y, MAZHAR T, AURANGZEB K, et al. Security risk models against attacks in smart grid using big data and artificial intelligence[J]. PeerJ Computer Science, 2024, 10: e1840. doi: 10.7717/peerj-cs.1840.
|
[17] |
YAPA C, DE ALWIS C, WIJEWARDHANA U, et al. Power line monitoring-based consensus algorithm for performance enhancement of energy blockchain applications in smart grid 2.0[J]. IEEE Transactions on Smart Grid, 2025, 16(1): 277–287. doi: 10.1109/TSG.2024.3445659.
|
[18] |
杨超群, 张恒. 基于CBMeMBer滤波器的多攻击检测方法[J]. 控制工程, 2022, 29(6): 1033–1039. doi: 10.14107/j.cnki.kzgc.20210098.
YANG Chaoqun and ZHANG Heng. Multi-attack detection approach based on CBMeMBer filter[J]. Control Engineering of China, 2022, 29(6): 1033–1039. doi: 10.14107/j.cnki.kzgc.20210098.
|
[19] |
李建华. 能源关键基础设施网络安全威胁与防御技术综述[J]. 电子与信息学报, 2020, 42(9): 2065–2081. doi: 10.11999/JEIT191055.
LI Jianhua. Overview of cyber security threats and defense technologies for energy critical infrastructure[J]. Journal of Electronics & Information Technology, 2020, 42(9): 2065–2081. doi: 10.11999/JEIT191055.
|
[20] |
刘家男, 翁健. 智能电网安全研究综述[J]. 信息网络安全, 2016(5): 78–84. doi: 10.3969/j.issn.1671-1122.2016.05.012.
LIU Jianan and WENG Jian. Survey on smart grid security[J]. Netinfo Security, 2016(5): 78–84. doi: 10.3969/j.issn.1671-1122.2016.05.012.
|
[21] |
岳芳, 王雪珍, 姜山. 智能电网的网络安全风险及应对策略[J]. 科技导报, 2024, 42(9): 6–16. doi: 10.3981/j.issn.1000-7857.2023.11.01692.
YUE Fang, WANG Xuezhen, and JIANG Shan. Network security risks and new countermeasures under the smart grid environment[J]. Science & Technology Review, 2024, 42(9): 6–16. doi: 10.3981/j.issn.1000-7857.2023.11.01692.
|
[22] |
杨至元, 张仕鹏, 孙浩. 电力系统信息物理网络安全综合分析与风险研究[J]. 南方能源建设, 2020, 7(3): 6–22. doi: 10.16516/j.gedi.issn2095-8676.2020.03.002.
YANG Zhiyuan, ZHANG Shipeng, and SUN Hao. Integrated cyber-physical contingency analysis and risk estimates[J]. Southern Energy Construction, 2020, 7(3): 6–22. doi: 10.16516/j.gedi.issn2095-8676.2020.03.002.
|
[23] |
苏盛, 汪干, 刘亮, 等. 电力物联网终端安全防护研究综述[J]. 高电压技术, 2022, 48(2): 513–525. doi: 10.13336/j.1003-6520.hve.20210150.
SU Sheng, WANG Gan, LIU Liang, et al. Review on security of power internet of things terminals[J]. High Voltage Engineering, 2022, 48(2): 513–525. doi: 10.13336/j.1003-6520.hve.20210150.
|
[24] |
胡钋, 李莉莉. 智能电网的信息物理安全综述[J]. 信息安全研究, 2019, 5(12): 1068–1075. doi: 10.3969/j.issn.2096-1057.2019.12.003.
HU Po and LI Lili. A review of cyber-physical security in smart grids[J]. Journal of Information Security Research, 2019, 5(12): 1068–1075. doi: 10.3969/j.issn.2096-1057.2019.12.003.
|
[25] |
文成林, 杨力. 信息物理系统攻击威胁的防御策略综述[J]. 控制理论与应用, 2024, 41(12): 2224–2236. doi: 10.7641/CTA.2023.30195.
WEN Chenglin and YANG Li. Research survey on defense strategy of attack threat in cyber physical systems[J]. Control Theory & Applications, 2024, 41(12): 2224–2236. doi: 10.7641/CTA.2023.30195.
|
[26] |
王琦, 邰伟, 汤奕, 等. 面向电力信息物理系统的虚假数据注入攻击研究综述[J]. 自动化学报, 2019, 45(1): 72–83. doi: 10.16383/j.aas.2018.c180369.
WANG Qi, TAI Wei, TANG Yi, et al. A review on false data injection attack toward cyber-physical power system[J]. Acta Automatica Sinica, 2019, 45(1): 72–83. doi: 10.16383/j.aas.2018.c180369.
|
[27] |
DIABA S Y, SHAFIE-KHAH M, and ELMUSRATI M. Cyber-physical attack and the future energy systems: A review[J]. Energy Reports, 2024, 12: 2914–2932. doi: 10.1016/j.egyr.2024.08.060.
|
[28] |
SHANG Tao, LIU Jiayu, GAO Xueqin, et al. Multistage adversarial game for cyber-physical attacks protection of smart grids[J]. IEEE Transactions on Industrial Informatics, 2025, 21(7): 5203–5212. doi: 10.1109/TII.2025.3552699.
|
[29] |
KHAN M A, SALEH A M, WASEEM M, et al. Smart grid cyber attacks: Overview, threats, and countermeasures[C]. 2024 22nd International Conference on Intelligent Systems Applications to Power Systems, Budapest, Hungary, 2024: 1–5. doi: 10.1109/ISAP63260.2024.10744349.
|
[30] |
ACHAAL B, ADDA M, BERGER M, et al. Study of smart grid cyber-security, examining architectures, communication networks, cyber-attacks, countermeasure techniques, and challenges[J]. Cybersecurity, 2024, 7(1): 10. doi: 10.1186/s42400-023-00200-w.
|
[31] |
PILLITTERI V Y and BREWER T L. Guidelines for Smart Grid Cybersecurity[R]. 7628 Rev 1, 2014. doi: 10.6028/NIST.IR.7628r1.
|
[32] |
ZIBAEIRAD A, KOLEINI F, BI Shengping, et al. A comprehensive survey on the security of smart grid: Challenges, mitigations, and future research opportunities[J]. arXiv preprint arXiv: 2407.07966, 2024. doi: 10.48550/arXiv.2407.07966.
|
[33] |
SONG E Y, FITZPATRICK G J, LEE K B, et al. A methodology for modeling interoperability of smart sensors in smart grids[J]. IEEE Transactions on Smart Grid, 2022, 13(1): 555–563. doi: 10.1109/TSG.2021.3124490.
|
[34] |
HABIB A A, HASAN M K, ALKHAYYAT A, et al. False data injection attack in smart grid cyber physical system: Issues, challenges, and future direction[J]. Computers and Electrical Engineering, 2023, 107: 108638. doi: 10.1016/j.compeleceng.2023.108638.
|
[35] |
AN Dou, ZHANG Feiye, YANG Qingyu, et al. Data integrity attack in dynamic state estimation of smart grid: Attack model and countermeasures[J]. IEEE Transactions on Automation Science and Engineering, 2022, 19(3): 1631–1644. doi: 10.1109/TASE.2022.3149764.
|
[36] |
PENG Sha, ZHANG Zhenyong, DENG Ruilong, et al. Localizing false data injection attacks in smart grid: A spectrum-based neural network approach[J]. IEEE Transactions on Smart Grid, 2023, 14(6): 4827–4838. doi: 10.1109/TSG.2023.3261970.
|
[37] |
WU Yi, WANG Qiankuan, GUO Naiwang, et al. Efficient multi-source self-attention data fusion for FDIA detection in smart grid[J]. Symmetry, 2023, 15(5): 1019. doi: 10.3390/sym15051019.
|
[38] |
ROOMI M M, HUSSAIN S M S, MASHIMA D, et al. Analysis of false data injection attacks against automated control for parallel generators in IEC 61850-based smart grid systems[J]. IEEE Systems Journal, 2023, 17(3): 4603–4614. doi: 10.1109/JSYST.2023.3236951.
|
[39] |
LI Beibei, LU Rongxing, XIAO Gaoxi, et al. Detection of false data injection attacks on smart grids: A resilience-enhanced scheme[J]. IEEE Transactions on Power Systems, 2022, 37(4): 2679–2692. doi: 10.1109/TPWRS.2021.3127353.
|
[40] |
KUMAR S, JARANIYA D, CHILIPI R R, et al. Optimal operation of WL-RC-QLMS and Luenberger observer based disturbance rejection controlled grid integrated PV-DSTATCOM system[J]. IEEE Transactions on Industry Applications, 2022, 58(6): 7870–7880. doi: 10.1109/TIA.2022.3199401.
|
[41] |
WANG Yufeng, ZHANG Zhihao, MA Jianhua, et al. KFRNN: An effective false data injection attack detection in smart grid based on Kalman filter and recurrent neural network[J]. IEEE Internet of Things Journal, 2022, 9(9): 6893–6904. doi: 10.1109/JIOT.2021.3113900.
|
[42] |
DAYANANDA P, SRIKANTASWAMY M, NAGARAJU S, et al. Efficient detection of faults and false data injection attacks in smart grid using a reconfigurable Kalman filter[J]. International Journal of Power Electronics and Drive Systems (IJPEDS), 2022, 13(4): 2086–2097. doi: 10.11591/ijpeds.v13.i4.pp2086-2097.
|
[43] |
HOSSAIN M J and NAEINI M. Multi-area distributed state estimation in smart grids using data-driven Kalman filters[J]. Energies, 2022, 15(19): 7105. doi: 10.3390/en15197105.
|
[44] |
LI Xue, WANG Ziyi, ZHANG Changda, et al. A novel dynamic watermarking-based EKF detection method for FDIAs in smart grid[J]. IEEE/CAA Journal of Automatica Sinica, 2022, 9(7): 1319–1322. doi: 10.1109/JAS.2022.105704.
|
[45] |
杨超群, 张恒, 何立栋, 等. 基于随机有限集的信息物理系统状态估计[J]. 控制工程, 2022, 29(8): 1424–1428. doi: 10.14107/j.cnki.kzgc.20200210.
YANG Chaoqun, ZHANG Heng, HE Lidong, et al. State estimation of cyber physical system based on random finite set[J]. Control Engineering of China, 2022, 29(8): 1424–1428. doi: 10.14107/j.cnki.kzgc.20200210.
|
[46] |
AHMED C M, PALLETI V R, and MISHRA V K. A practical physical watermarking approach to detect replay attacks in a CPS[J]. Journal of Process Control, 2022, 116: 136–146. doi: 10.1016/j.jprocont.2022.06.002.
|
[47] |
MA Lei, CHU Zhong, YANG Chunyu, et al. Recursive watermarking-based transient covert attack detection for the industrial CPS[J]. IEEE Transactions on Information Forensics and Security, 2023, 18: 1709–1719. doi: 10.1109/TIFS.2023.3251857.
|
[48] |
MIN B and VARADHARAJAN V. Design and analysis of security attacks against critical smart grid infrastructures[C]. 2014 19th International Conference on Engineering of Complex Computer Systems, Tianjin, China, 2014: 59–68. doi: 10.1109/ICECCS.2014.16.
|
[49] |
TEIXEIRA A, PÉREZ D, SANDBERG H, et al. Attack models and scenarios for networked control systems[C]. Proceedings of the 1st international conference on High Confidence Networked Systems, Beijing, China, 2012: 55–64. doi: 10.1145/2185505.2185515.
|
[50] |
MURGUIA C and RUTHS J. Characterization of a CUSUM model-based sensor attack detector[C]. 2016 IEEE 55th Conference on Decision and Control, Las Vegas, USA, 2016: 1303–1309. doi: 10.1109/CDC.2016.7798446.
|
[51] |
GUO Ziyang, SHI Dawei, JOHANSSON K H, et al. Optimal linear cyber-attack on remote state estimation[J]. IEEE Transactions on Control of Network Systems, 2017, 4(1): 4–13. doi: 10.1109/TCNS.2016.2570003.
|
[52] |
MO Yilin, GARONE E, CASAVOLA A, et al. False data injection attacks against state estimation in wireless sensor networks[C]. 49th IEEE Conference on Decision and Control, Atlanta, USA, 2010: 5967–5972. doi: 10.1109/CDC.2010.5718158.
|
[53] |
TAN Rui, BADRINATH KRISHNA V, YAU D K Y, et al. Impact of integrity attacks on real-time pricing in smart grids[C]. Proceedings of the 2013 ACM SIGSAC Conference on Computer & Communications Security, Berlin, Germany, 2013: 439–450. doi: 10.1145/2508859.2516705.
|
[54] |
SANDBERG H, TEIXEIRA A M H, and JOHANSSON K H. On security indices for state estimators in power networks[C]. First Workshop on Secure Control Systems, Stockholm, Sweden, 2010: 20101–6. (查阅网上资料, 未找到本条文献页码信息, 请确认).
|
[55] |
LONG Men, WU C H, and HUNG J Y. Denial of service attacks on network-based control systems: Impact and mitigation[J]. IEEE Transactions on Industrial Informatics, 2005, 1(2): 85–96. doi: 10.1109/TII.2005.844422.
|
[56] |
CHEN Yuan, KAR S, and MOURA J M F. Optimal attack strategies subject to detection constraints against cyber-physical systems[J]. IEEE Transactions on Control of Network Systems, 2018, 5(3): 1157–1168. doi: 10.1109/TCNS.2017.2690399.
|
[57] |
LI Tongxiang, CHEN Bo, YU Li, et al. Active security control approach against DoS attacks in cyber-physical systems[J]. IEEE Transactions on Automatic Control, 2021, 66(9): 4303–4310. doi: 10.1109/TAC.2020.3032598.
|
[58] |
ZAHID F, FUNCHAL G, MELO V, et al. DDoS attacks on smart manufacturing systems: A cross-domain taxonomy and attack vectors[C]. 2022 IEEE 20th International Conference on Industrial Informatics, Perth, Australia, 2022: 214–219. doi: 10.1109/INDIN51773.2022.9976172.
|
[59] |
HU Songlin, GE Xiaohua, CHEN Xiaoli, et al. Resilient load frequency control of islanded AC microgrids under concurrent false data injection and denial-of-service attacks[J]. IEEE Transactions on Smart Grid, 2023, 14(1): 690–700. doi: 10.1109/TSG.2022.3190680.
|
[60] |
BECHTEL M and YUN H. Memory-aware denial-of-service attacks on shared cache in multicore real-time systems[J]. IEEE Transactions on Computers, 2022, 71(9): 2351–2357. doi: 10.1109/TC.2021.3108044.
|
[61] |
CAI Tianyang, JIA Tao, ADEPU S, et al. ADAM: An adaptive DDoS attack mitigation scheme in software-defined cyber-physical system[J]. IEEE Transactions on Industrial Informatics, 2023, 19(6): 7802–7813. doi: 10.1109/TII.2023.3240586.
|
[62] |
LI Shi, AHN C K, and XIANG Zhenrong. Decentralized sampled-data control for cyber-physical systems subject to DoS attacks[J]. IEEE Systems Journal, 2021, 15(4): 5126–5134. doi: 10.1109/JSYST.2020.3019939.
|
[63] |
DE SÁ A O, DA COSTA CARMO L F R, and MACHADO R C S. Covert attacks in cyber-physical control systems[J]. IEEE Transactions on Industrial Informatics, 2017, 13(4): 1641–1651. doi: 10.1109/TII.2017.2676005.
|
[64] |
OLOWONONI F O, RAWAT D B, and LIU Chunmei. Resilient machine learning for networked cyber physical systems: A survey for machine learning security to securing machine learning for CPS[J]. IEEE Communications Surveys & Tutorials, 2021, 23(1): 524–552. doi: 10.1109/COMST.2020.3036778.
|
[65] |
HUANG Lingying, WU Junfeng, MO Yilin, et al. Joint sensor and actuator placement for infinite-horizon LQG control[J]. IEEE Transactions on Automatic Control, 2022, 67(1): 398–405. doi: 10.1109/TAC.2021.3055194.
|
[66] |
KHAZRAEI A, KEBRIAEI H, and SALMASI F R. A new watermarking approach for replay attack detection in LQG systems[C]. 2017 IEEE 56th Annual Conference on Decision and Control (CDC), Melbourne, Australia, 2017: 5143–5148. doi: 10.1109/CDC.2017.8264421.
|
[67] |
PORTER M, HESPANHOL P, ASWANI A, et al. Detecting generalized replay attacks via time-varying dynamic watermarking[J]. IEEE Transactions on Automatic Control, 2021, 66(8): 3502–3517. doi: 10.1109/TAC.2020.3022756.
|
[68] |
GHADERI M, GHEITASI K, and LUCIA W. A blended active detection strategy for false data injection attacks in cyber-physical systems[J]. IEEE Transactions on Control of Network Systems, 2021, 8(1): 168–176. doi: 10.1109/TCNS.2020.3024315.
|
[69] |
GIRALDO J, CARDENAS A, and SANFELICE R G. A moving target defense to detect stealthy attacks in cyber-physical systems[C]. 2019 American Control Conference (ACC), Philadelphia, USA, 2019: 391–396. doi: 10.23919/ACC.2019.8815274.
|
[70] |
GRIFFIOEN P, WEERAKKODY S, and SINOPOLI B. An optimal design of a moving target defense for attack detection in control systems[C]. 2019 American Control Conference, Philadelphia, USA, 2019: 4527–4534. doi: 10.23919/ACC.2019.8814689.
|
[71] |
MANANDHAR K, CAO Xiaojun, HU Fei, et al. Detection of faults and attacks including false data injection attack in smart grid using Kalman filter[J]. IEEE Transactions on Control of Network Systems, 2014, 1(4): 370–379. doi: 10.1109/TCNS.2014.2357531.
|
[72] |
PANG Zhonghua, LIU Guoping, ZHOU Donghua, et al. Two-channel false data injection attacks against output tracking control of networked systems[J]. IEEE Transactions on Industrial Electronics, 2016, 63(5): 3242–3251. doi: 10.1109/TIE.2016.2535119.
|
[73] |
RAWAT D B and BAJRACHARYA C. Detection of false data injection attacks in smart grid communication systems[J]. IEEE Signal Processing Letters, 2015, 22(10): 1652–1656. doi: 10.1109/LSP.2015.2421935.
|
[74] |
YE Dan and ZHANG Tianyu. Summation detector for false data-injection attack in cyber-physical systems[J]. IEEE Transactions on Cybernetics, 2020, 50(6): 2338–2345. doi: 10.1109/TCYB.2019.2915124.
|
[75] |
KURT M N, YILMAZ Y, and WANG Xiaodong. Distributed quickest detection of cyber-attacks in smart grid[J]. IEEE Transactions on Information Forensics and Security, 2018, 13(8): 2015–2030. doi: 10.1109/TIFS.2018.2800908.
|
[76] |
YANG Chao, YAO Wei, WANG Ying, et al. Resilient event-triggered load frequency control for multi-area power system with wind power integrated considering packet losses[J]. IEEE Access, 2021, 9: 78784–78798. doi: 10.1109/ACCESS.2021.3083609.
|
[77] |
SUN Yuancheng and YANG Guanghong. Event-triggered resilient control for cyber-physical systems under asynchronous DoS attacks[J]. Information Sciences, 2018, 465: 340–352. doi: 10.1016/j.ins.2018.07.030.
|
[78] |
GIL T M and POLETTO M. MULTOPS: A data-structure for bandwidth attack detection[C]. Proceedings of the 10th Conference on USENIX Security Symposium - Volume 10, Washington, USA, 2001: 3. doi: 10.5555/1267612.1267615.
|
[79] |
MAHMOOD H, MAHMOOD D, SHAHEEN Q, et al. S‐DPS: An SDN‐based DDoS protection system for smart grids[J]. Security and Communication Networks, 2021, 2021(1): 6629098. doi: 10.1155/2021/6629098.
|
[80] |
RASHED M, GONDAL I, KAMRUZZAMAN J, et al. State estimation within IED based smart grid using Kalman estimates[J]. Electronics, 2021, 10(15): 1783. doi: 10.3390/electronics10151783.
|
[81] |
SUN Yao, MAO Yashan, LIU Ting, et al. A dynamic secret-based encryption method in smart grids wireless communication[C]. IEEE PES Innovative Smart Grid Technologies, Tianjin, China, 2012: 1–5. doi: 10.1109/ISGT-Asia.2012.6303199.
|
[82] |
SAXENA N and GRIJALVA S. Dynamic secrets and secret keys based scheme for securing last mile smart grid wireless communication[J]. IEEE Transactions on Industrial Informatics, 2017, 13(3): 1482–1491. doi: 10.1109/TII.2016.2610950.
|
[83] |
LIANG Gaoqi, WELLER S R, LUO Fengji, et al. Distributed blockchain-based data protection framework for modern power systems against cyber attacks[J]. IEEE Transactions on Smart Grid, 2019, 10(3): 3162–3173. doi: 10.1109/TSG.2018.2819663.
|
[84] |
MBAREK B, CHREN S, ROSSI B, et al. An enhanced blockchain-based data management scheme for microgrids[M]. BAROLLI L, AMATO F, MOSCATO F, et al. Web, Artificial Intelligence and Network Applications: Proceedings of the Workshops of the 34th International Conference on Advanced Information Networking and Applications. Cham: Springer, 2020: 766–775. doi: 10.1007/978-3-030-44038-1_70.
|
[85] |
KESHK M, TURNBULL B, MOUSTAFA N, et al. A privacy-preserving-framework-based blockchain and deep learning for protecting smart power networks[J]. IEEE Transactions on Industrial Informatics, 2020, 16(8): 5110–5118. doi: 10.1109/TII.2019.2957140.
|
[86] |
ALJARRAH E. AI-based model for Prediction of Power consumption in smart grid-smart way towards smart city using blockchain technology[J]. Intelligent Systems with Applications, 2024, 24: 200440. doi: 10.1016/j.iswa.2024.200440.
|
[87] |
CHEN Jian and ABUR A. Placement of PMUs to enable bad data detection in state estimation[J]. IEEE Transactions on Power Systems, 2006, 21(4): 1608–1615. doi: 10.1109/TPWRS.2006.881149.
|
[88] |
GÖL M and ABUR A. PMU placement for robust state estimation[C]. 2013 North American Power Symposium, Manhattan, USA, 2013: 1–5. doi: 10.1109/NAPS.2013.6666868.
|
[89] |
MANOUSAKIS N M and KORRES G N. Optimal PMU placement for numerical observability considering fixed channel capacity—A semidefinite programming approach[J]. IEEE Transactions on Power Systems, 2016, 31(4): 3328–3329. doi: 10.1109/TPWRS.2015.2490599.
|
[90] |
GIANI A, BENT R, and PAN Feng. Phasor measurement unit selection for unobservable electric power data integrity attack detection[J]. International Journal of Critical Infrastructure Protection, 2014, 7(3): 155–164. doi: 10.1016/j.ijcip.2014.06.001.
|
[91] |
BOBBA R B, ROGERS K M, WANG Qiyan, et al. Detecting false data injection attacks on dc state estimation[C]. The First Workshop on Secure Control Systems, Stockholm, Sweden, 2010: 2010. (查阅网上资料, 未找到本条文献页码信息, 请确认).
|
[92] |
DÁN G and SANDBERG H. Stealth attacks and protection schemes for state estimators in power systems[C]. 2010 First IEEE International Conference on Smart Grid Communications, Gaithersburg, USA, 2010: 214–219. doi: 10.1109/SMARTGRID.2010.5622046.
|
[93] |
DEMIR K, ISMAIL H, VATEVA-GUROVA T, et al. Securing the cloud-assisted smart grid[J]. International Journal of Critical Infrastructure Protection, 2018, 23: 100–111. doi: 10.1016/j.ijcip.2018.08.004.
|
[94] |
RAHIMINEJAD A, PLOTNEK J, ATALLAH R, et al. A resilience-based recovery scheme for smart grid restoration following cyberattacks to substations[J]. International Journal of Electrical Power & Energy Systems, 2023, 145: 108610. doi: 10.1016/j.ijepes.2022.108610.
|
[95] |
WEI Fanrong, WAN Zhiqiang, and HE Haibo. Cyber-attack recovery strategy for smart grid based on deep reinforcement learning[J]. IEEE Transactions on Smart Grid, 2020, 11(3): 2476–2486. doi: 10.1109/TSG.2019.2956161.
|
[96] |
LIAO Shiwu, YAO Wei, HAN Xingning, et al. An improved two-stage optimization for network and load recovery during power system restoration[J]. Applied Energy, 2019, 249: 265–275. doi: 10.1016/j.apenergy.2019.04.176.
|
[97] |
PANDEY Y, HASAN N, HUSAIN M A, et al. An environment friendly energy-saving dispatch using mixed integer linear programming relaxation in the smart grid with renewable energy sources[J]. Distributed Generation & Alternative Energy Journal, 2022, 37(4): 1239–1258. (不确定卷期是否正确,请确认). doi: 10.13052/dgaej2156-3306.37414.
|
[98] |
DING Jianguo, QAMMAR A, ZHANG Zhimin, et al. Cyber threats to smart grids: Review, taxonomy, potential solutions, and future directions[J]. Energies, 2022, 15(18): 6799. doi: 10.3390/en15186799.
|
[99] |
KAWOOSA A I and PRASHAR D. A review of cyber securities in smart grid technology[C]. 2021 2nd International Conference on Computation, Automation and Knowledge Management, Dubai, United Arab Emirates, 2021: 151–156. doi: 10.1109/ICCAKM50778.2021.9357698.
|
[100] |
SANDE-RÍOS J, CANAL-SÁNCHEZ J, MANZANO-HERNÁNDEZ C, et al. Threat analysis and adversarial model for smart grids[C] 2024 IEEE European Symposium on Security and Privacy Workshops, Vienna, Austria, 2024: 130–145. doi: 10.1109/EuroSPW61312.2024.00020.
|
[101] |
HASAN M K, HABIB A A, SHUKUR Z, et al. Review on cyber-physical and cyber-security system in smart grid: Standards, protocols, constraints, and recommendations[J]. Journal of Network and Computer Applications, 2023, 209: 103540. doi: 10.1016/j.jnca.2022.103540.
|
[102] |
HASAN M K, HABIB A A, ISLAM S, et al. Smart grid communication networks for electric vehicles empowering distributed energy generation: Constraints, challenges, and recommendations[J]. Energies, 2023, 16(3): 1140. doi: 10.3390/en16031140.
|
[103] |
ORLANDO M, ESTEBSARI A, PONS E, et al. A smart meter infrastructure for smart grid IoT applications[J]. IEEE Internet of Things Journal, 2022, 9(14): 12529–12541. doi: 10.1109/JIOT.2021.3137596.
|
[104] |
LIN I C, LIN K Y, WU N I, et al. A quantum key distribution for securing smart grids[J]. Cryptography, 2025, 9(2): 28. doi: 10.3390/cryptography9020028.
|
[105] |
GRICE W, OLAMA M, LEE A, et al. Quantum key distribution applicability to smart grid cybersecurity systems[J]. IEEE Access, 2025, 13: 17398–17413. doi: 10.1109/ACCESS.2025.3533942.
|