| Citation: | LIU Xiangli, LI Zan, CHEN Yifeng, CHEN Le. Quality Map-guided Fidelity Compression Method for High-energy Regions of Spectral Data[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250650 |
| [1] |
VAN DEN OORD A, KALCHBRENNER N, and KAVUKCUOGLU K. Pixel recurrent neural networks[C]. Proceedings of the 33rd International Conference on Machine Learning, New York, USA, 2016: 1747–1756.
|
| [2] |
VAN DEN OORD A, KALCHBRENNER N, VINYALS O, et al. Conditional image generation with PixelCNN decoders[C]. Proceedings of the 30th International Conference on Neural Information Processing Systems, Barcelona, Spain, 2016: 4797–4805.
|
| [3] |
SALIMANS T, KARPATHY A, CHEN Xi, et al. PixelCNN++: Improving the PixelCNN with discretized logistic mixture likelihood and other modifications[C]. Proceedings of the 5th International Conference on Learning Representations, Toulon, France, 2017: 1–10.
|
| [4] |
REED S, VAN DEN OORD A, KALCHBRENNER N, et al. Parallel multiscale autoregressive density estimation[C]. Proceedings of the 34th International Conference on Machine Learning, Sydney, Australia, 2017: 2912–2921.
|
| [5] |
CHEN Xi, MISHRA N, ROHANINEJAD M, et al. PixelSNAIL: An improved autoregressive generative model[C]. Proceedings of the 35th International Conference on Machine Learning, Stockholm, Sweden, 2018: 864–872.
|
| [6] |
CHANDAK S, TATWAWADI K, WEN Chengtao, et al. LFZip: Lossy compression of multivariate floating-point time series data via improved prediction[C]. Proceedings of 2020 Data Compression Conference (DCC), Snowbird, USA, 2020: 342–351. doi: 10.1109/DCC47342.2020.00042.
|
| [7] |
HARIS T and ONAK K. Compression barriers for autoregressive transformers[EB/OL]. https://arxiv.org/abs/2502.15955, 2025.
|
| [8] |
LOGUE K. Glaucus: A complex-valued radio signal autoencoder[C]. Proceedings of 2023 IEEE Aerospace Conference, Big Sky, USA, 2023: 1–5. doi: 10.1109/AERO55745.2023.10115599.
|
| [9] |
ROSENBERGER J, KÜBEL A, and ROTHFUß F. Comparison and extension of autoencoder models for uni- and multivariate signal compression in IIoT[C]. Proceedings of 2022 Data Compression Conference (DCC), Snowbird, USA, 2022: 481. doi: 1 0.1109/DCC52660.2022.00092.
|
| [10] |
HE Peng, MENG Shaoming, CUI Yaping, et al. Compression and encryption of heterogeneous signals for internet of medical things[J]. IEEE Journal of Biomedical and Health Informatics, 2024, 28(5): 2524–2535. doi: 10.1109/JBHI.2023.3264997.
|
| [11] |
KINGMA D P and WELLING M. Auto-encoding variational Bayes[C]. Proceedings of the 2nd International Conference on Learning Representations, Banff, Canada, 2014: 1–14.
|
| [12] |
DINH L, SOHL-DICKSTEIN J, and BENGIO S. Density estimation using real NVP[C]. Proceedings of the 5th International Conference on Learning Representations, Toulon, France, 2017: 1–32.
|
| [13] |
KUMBLE L and PATIL K K. An improved data compression framework for wireless sensor networks using stacked convolutional autoencoder (S-CAE)[J]. SN Computer Science, 2023, 4(4): 419. doi: 10.1007/s42979-023-01845-7.
|
| [14] |
LIANG Zhenyu, CHEN Letian, and XIAO Wenbin. Compression autoencoder for high-resolution ocean sound speed profile data[J]. Journal of Physics: Conference Series, 2024, 2718: 012067. doi: 10.1088/1742-6596/2718/1/012067.
|
| [15] |
BASTOLA S and TEKES C. Vector-quantization variational autoencoder based data rate reduction for wireless ultrasound imaging systems[C]. Proceedings of the SoutheastCon 2024, Atlanta, USA, 2024: 1426–1431. doi: 10.1109/SoutheastCon52093.2024.10500188.
|
| [16] |
RODRIGUEZ A, KAASARAGADDA Y, and KOKALJ-FILIPOVIC S. Deep-learned compression for radio-frequency signal classification[C]. Proceedings of 2024 IEEE International Symposium on Information Theory Workshops, Athens, Greece, 2024: 1–6. doi: 10.1109/ISIT-W61686.2024.10591760.
|
| [17] |
KOMPELLA S K, DAVASLIOGLU K, SAGDUYU Y E, et al. Augmenting training data with vector-quantized variational autoencoder for classifying RF signals[C]. Proceedings of the MILCOM 2024 - 2024 IEEE Military Communications Conference, Washington, USA, 2024: 1–6. doi: 10.1109/MILCOM61039.2024.10773675.
|
| [18] |
TODERICI G, O’MALLEY S M, HWANG S J, et al. Variable rate image compression with recurrent neural networks[C]. Proceedings of the 4th International Conference on Learning Representations, San Juan, USA, 2024: 1–12.
|
| [19] |
DASAN E and JEYABALAN N S J. Towards the analysis of regularized denoising autoencoder for biosignal processing: Lasso versus ridge norms[J]. Wireless Personal Communications, 2024, 134(1): 319–338. doi: 10.1007/s11277-024-10912-y.
|
| [20] |
RUSSELL M and WANG Peng. Physics-informed deep learning for signal compression and reconstruction of big data in industrial condition monitoring[J]. Mechanical Systems and Signal Processing, 2022, 168: 108709. doi: 10.1016/j.ymssp.2021.108709.
|
| [21] |
CHEN Tong, LIU Haojie, MA Zhan, et al. End-to-end learnt image compression via non-local attention optimization and improved context modeling[J]. IEEE Transactions on Image Processing, 2021, 30: 3179–3191. doi: 10.1109/TIP.2021.3058615.
|
| [22] |
XIE Huiqiang and QIN Zhijin. A lite distributed semantic communication system for internet of things[J]. IEEE Journal on Selected Areas in Communications, 2021, 39(1): 142–153. doi: 10.1109/JSAC.2020.3036968.
|
| [23] |
ELBIR A M, PAPAZAFEIROPOULOS A K, and CHATZINOTAS S. Federated learning for physical layer design[J]. IEEE Communications Magazine, 2021, 59(11): 81–87. doi: 10.1109/MCOM.101.2100138.
|
| [24] |
ZHANG Yangyang, YU Danyang, ZHANG Xichang, et al. An autoregressive model-based differential framework with learnable regularization for CSI feedback in time-varying massive MIMO systems[J]. IEEE Communications Letters, 2025, 29(1): 230–234. doi: 10.1109/LCOMM.2024.3512537.
|
| [25] |
ALTED F. Blosc: A blocking, shuffling and loss-less compression library[EB/OL]. https://blosc.org, 2018. (查阅网上资料,未找到本条文献信息,请确认).
|
| [26] |
KHELIFATI A, KHAYATI M, and CUDRÉ-MAUROUX P. CORAD: Correlation-aware compression of massive time series using sparse dictionary coding[C]. Proceedings of 2019 IEEE International Conference on Big Data (Big Data), Los Angeles, USA, 2019: 2289–2298. doi: 10.1109/BigData47090.2019.9005580.
|
| [27] |
MAULIDINA A P, WIJAYA R A, MAZEL K, et al. Comparative study of data compression algorithms: Zstandard, zlib & LZ4[C]. Proceedings of the 2nd International Conference on Science, Engineering Management and Information Technology, Ankara, Turkey, 2024: 394–406. doi: 10.1007/978-3-031-72284-4_24.
|
| [28] |
ZENG Yijing, CALVO-PALOMINO R, GIUSTINIANO D, et al. Adaptive uplink data compression in spectrum crowdsensing systems[J]. IEEE/ACM Transactions on Networking, 2023, 31(5): 2207–2221. doi: 10.1109/TNET.2023.3239378.
|