| Citation: | ZHANG Zehua, ZHAO Ning, WANG Shuai, WANG Xuan, ZHENG Qiang. Joint Mask and Multi-Frequency Dual Attention GAN Network for CT-to-DWI Image Synthesis in Acute Ischemic Stroke[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250643 |
| [1] |
ZHANG Xuting, ZHONG Wansi, XUE Rui, et al. Argatroban in patients with acute ischemic stroke with early neurological deterioration: A randomized clinical trial[J]. JAMA Neurology, 2024, 81(2): 118–125. doi: 10.1001/jamaneurol.2023.5093.
|
| [2] |
VANDE VYVERE T, PISICĂ D, WILMS G, et al. Imaging findings in acute traumatic brain injury: A national institute of neurological disorders and stroke common data element-based pictorial review and analysis of over 4000 admission brain computed tomography scans from the collaborative European NeuroTrauma effectiveness research in traumatic brain injury (CENTER-TBI) study[J]. Journal of Neurotrauma, 2024, 41(19/20): 2248–2297. doi: 10.1089/neu.2023.0553.
|
| [3] |
ELSHERIF S, LEGERE B, MOHAMED A, et al. Beyond conventional imaging: A systematic review and meta-analysis assessing the impact of computed tomography perfusion on ischemic stroke outcomes in the late window[J]. International Journal of Stroke, 2025, 20(3): 278–288. doi: 10.1177/17474930241292915.
|
| [4] |
RAPILLO C M, DUNET V, PISTOCCHI S, et al. Moving from CT to MRI paradigm in acute ischemic stroke: Feasibility, effects on stroke diagnosis and long-term outcomes[J]. Stroke, 2024, 55(5): 1329–1338. doi: 10.1161/strokeaha.123.045154.
|
| [5] |
GHEBREHIWET I, ZAKI N, DAMSEH R, et al. Revolutionizing personalized medicine with generative AI: A systematic review[J]. Artificial Intelligence Review, 2024, 57(5): 128. doi: 10.1007/s10462-024-10768-5.
|
| [6] |
SHURRAB S, GUERRA-MANZANARES A, MAGID A, et al. Multimodal machine learning for stroke prognosis and diagnosis: A systematic review[J]. IEEE Journal of Biomedical and Health Informatics, 2024, 28(11): 6958–6973. doi: 10.1109/jbhi.2024.3448238.
|
| [7] |
ARMANIOUS K, JIANG Chenming, FISCHER M, et al. MedGAN: Medical image translation using GANs[J]. Computerized Medical Imaging and Graphics, 2020, 79: 101684. doi: 10.1016/j.compmedimag.2019.101684.
|
| [8] |
EKANAYAKE M, PAWAR K, HARANDI M, et al. McSTRA: A multi-branch cascaded swin transformer for point spread function-guided robust MRI reconstruction[J]. Computers in Biology and Medicine, 2024, 168: 107775. doi: 10.1016/j.compbiomed.2023.107775.
|
| [9] |
DALMAZ O, YURT M, and ÇUKUR T. ResViT: Residual vision transformers for multimodal medical image synthesis[J]. IEEE Transactions on Medical Imaging, 2022, 41(10): 2598–2614. doi: 10.1109/tmi.2022.3167808.
|
| [10] |
ÖZBEY M, DALMAZ O, DAR S U H, et al. Unsupervised medical image translation with adversarial diffusion models[J]. IEEE Transactions on Medical Imaging, 2023, 42(12): 3524–3539. doi: 10.1109/tmi.2023.3290149.
|
| [11] |
LUO Yu, ZHANG Shaowei, LING Jie, et al. Mask-guided generative adversarial network for MRI-based CT synthesis[J]. Knowledge-Based Systems, 2024, 295: 111799. doi: 10.1016/j.knosys.2024.111799.
|
| [12] |
YANG Linlin, SHANGGUAN Hong, ZHANG Xiong, et al. High-frequency sensitive generative adversarial network for low-dose CT image denoising[J]. IEEE Access, 2020, 8: 930–943. doi: 10.1109/access.2019.2961983.
|
| [13] |
HUTCHINSON E B, AVRAM A V, IRFANOGLU M O, et al. Analysis of the effects of noise, DWI sampling, and value of assumed parameters in diffusion MRI models[J]. Magnetic Resonance in Medicine, 2017, 78(5): 1767–1780. doi: 10.1002/mrm.26575.
|
| [14] |
DAS S and KUNDU M K. NSCT-based multimodal medical image fusion using pulse-coupled neural network and modified spatial frequency[J]. Medical & Biological Engineering & Computing, 2012, 50(10): 1105–1114. doi: 10.1007/s11517-012-0943-3.
|
| [15] |
周涛, 刘赟璨, 陆惠玲, 等. ResNet及其在医学图像处理领域的应用: 研究进展与挑战[J]. 电子与信息学报, 2022, 44(1): 149–167. doi: 10.11999/JEIT210914.
ZHOU Tao, LIU Yuncan, LU Huiling, et al. ResNet and its application to medical image processing: Research progress and challenges[J]. Journal of Electronics & Information Technology, 2022, 44(1): 149–167. doi: 10.11999/JEIT210914.
|
| [16] |
BARRON J T. A general and adaptive robust loss function[C]. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, USA, 2019: 4326–4334. doi: 10.1109/CVPR.2019.00446.
|
| [17] |
LUO Jialin, DAI Peishan, HE Zhuang, et al. Deep learning models for ischemic stroke lesion segmentation in medical images: A survey[J]. Computers in Biology and Medicine, 2024, 175: 108509. doi: 10.1016/j.compbiomed.2024.108509.
|
| [18] |
WANG Tingchun, LIU Mingyu, ZHU Junyan, et al. High-resolution image synthesis and semantic manipulation with conditional GANs[C]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 8798–8807. doi: 10.1109/CVPR.2018.00917.
|
| [19] |
LIU Rui, DING Xiaoxi, SHAO Yimin, et al. An interpretable multiplication-convolution residual network for equipment fault diagnosis via time–frequency filtering[J]. Advanced Engineering Informatics, 2024, 60: 102421. doi: 10.1016/j.aei.2024.102421.
|
| [20] |
LI Yihao, EL HABIB DAHO M, CONZE P H, et al. A review of deep learning-based information fusion techniques for multimodal medical image classification[J]. Computers in Biology and Medicine, 2024, 177: 108635. doi: 10.1016/j.compbiomed.2024.108635.
|
| [21] |
PENG Yanjun, SUN Jindong, REN Yande, et al. A histogram-driven generative adversarial network for brain MRI to CT synthesis[J]. Knowledge-Based Systems, 2023, 277: 110802. doi: 10.1016/j.knosys.2023.110802.
|
| [22] |
LIU Yanxia, CHEN Anni, SHI Hongyu, et al. CT synthesis from MRI using multi-cycle GAN for head-and-neck radiation therapy[J]. Computerized Medical Imaging and Graphics, 2021, 91: 101953. doi: 10.1016/j.compmedimag.2021.101953.
|
| [23] |
DAI Xianjin, LEI Yang, LIU Yingzi, et al. Intensity non-uniformity correction in MR imaging using residual cycle generative adversarial network[J]. Physics in Medicine & Biology, 2020, 65(21): 215025. doi: 10.1088/1361-6560/abb31f.
|
| [24] |
DING Bin, LONG Chengjiang, ZHANG Ling, et al. ARGAN: Attentive recurrent generative adversarial network for shadow detection and removal[C]. 2019 IEEE/CVF International Conference on Computer Vision, Seoul, South Korea, 2019: 10212–10221. doi: 10.1109/ICCV.2019.01031.
|