Advanced Search
Turn off MathJax
Article Contents
WEI Xiaotong, XU Haobo, YIN Chundi, HUANG Junpei, SUN Wenhao, XU Wenjun, WANG Ying, LIU Yaoqi, MENG Fantao, MIN Feng, WANG Mengdi, HAN Yinhe. Space-based Computing Chips: Current Status, Trends and Key Technique[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250633
Citation: WEI Xiaotong, XU Haobo, YIN Chundi, HUANG Junpei, SUN Wenhao, XU Wenjun, WANG Ying, LIU Yaoqi, MENG Fantao, MIN Feng, WANG Mengdi, HAN Yinhe. Space-based Computing Chips: Current Status, Trends and Key Technique[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250633

Space-based Computing Chips: Current Status, Trends and Key Technique

doi: 10.11999/JEIT250633 cstr: 32379.14.JEIT250633
Funds:  The National Natural Science Foundation of China (62025404, 62495104), Beijing Natural Science Foundation (L241013)
  • Received Date: 2025-07-04
  • Rev Recd Date: 2025-09-05
  • Available Online: 2025-09-17
  •   Significance   With the continuous advancement of aerospace technology and the growing demand for space applications, space-based computing chips have assumed increasingly important strategic roles as core hardware infrastructure of space information systems. As the technological foundation enabling intelligent data processing and reliable communications for spacecraft—including satellite platforms, space stations, and deep space probes—space-based computing chips not only safeguard national security and support economic development but also play an irreplaceable role in serving civilian needs. Although existing survey literature has systematically reviewed the development of aerospace Central Processing Units (CPUs), comprehensive analyses of other key components within the space-based computing chip ecosystem remain limited. To address this gap, this paper systematically examines the technological evolution of various space-based computing chips and their principal fault-tolerant mechanisms, and further explores potential future trends in this field.  Progress   This paper adopts a functional architecture-oriented classification to systematically analyze and summarize the current technological status of space-based computing chips across three dimensions: CPU, Field-Programmable Gate Array (FPGA), and dedicated chip. For CPU technology, a classification study of general-purpose processors widely used in aerospace applications is conducted based on instruction set architectures, with in-depth analysis of the technical characteristics and representative products of various architectures, together with an objective evaluation of their advantages and limitations in space environments. In the FPGA domain, the technical specifications and performance characteristics of mainstream space-grade FPGA products, both domestic and international, are comprehensively reviewed to provide a reference for application selection. For dedicated chips, a detailed categorization is carried out according to functional architectural features and application scenario requirements, covering Digital Signal Processing (DSP) chips for signal processing acceleration, Graphics Processing Unit (GPU) chips for graphics computation, and Neural Processing Unit (NPU) chips for space-based artificial intelligence applications, thereby systematically clarifying the applicability of different architectures in complex space environments. In addition, this paper presents an in-depth analysis of the key fault-tolerant technology framework for space-based computing chips at multiple levels, including system, architecture, circuit, and process library, and provides a comprehensive evaluation of the technical advantages, application limitations, and development prospects of various fault-tolerant mechanisms. This analysis offers theoretical guidance for the reliability design of space-based computing chips.  Conclusions  This review systematically summarizes the technological development of space-based computing chips, providing a comprehensive analysis of the architectural characteristics of different chip types and their associated fault-tolerant technology frameworks, while elucidating the applicable scenarios and technical limitations of various fault-tolerant mechanisms. The central principle of fault-tolerant design for space-based computing chips is to achieve effective detection and correction of circuit faults through redundancy mechanisms. This paper offers an in-depth analysis of the implementation principles and application characteristics of fault-tolerant technologies at four hierarchical levels: system, architecture, circuit, and process library. Although these multi-level approaches substantially improve system reliability, they inevitably introduce hardware resource overhead and performance penalties. Therefore, the engineering design of space-based computing chips requires optimized strategies that combine multi-level fault-tolerant technologies according to specific reliability requirements, aiming to balance reliability, cost, and performance to meet the intended design objectives and technical specifications.  Prospects   Looking ahead, space-based computing chips present broad prospects in high computing capability, widespread adoption of Commercial Off-The-Shelf (COTS) devices, and the development of Reduced Instruction Set Computer – Five (RISC-V) instruction set architectures. With the rapid advancement of space technology, space-based systems are undergoing a transformation from traditional single-function platforms to integrated platforms characterized by multi-task collaboration, autonomy, and intelligence. Real-time data processing, multi-task parallel computing, and intelligent decision-making have become the principal driving forces in the evolution of space-based computing technology, all of which demand robust computational foundations. Compared with traditional radiation-hardened specialized devices, COTS devices are emerging as a major trend in space-based computing chip development due to their advantages in cost-effectiveness, computational performance, shorter development cycles, and product diversity. In addition, RISC-V, as an open-source instruction set architecture, offers unique advantages and significant potential for space-based computing chip innovation through its modular design philosophy, exceptional scalability, and open ecosystem.
  • loading
  • [1]
    LENTARIS G, MARAGOS K, STRATAKOS I, et al. High-performance embedded computing in space: Evaluation of platforms for vision-based navigation[J]. Journal of Aerospace Information Systems, 2018, 15(4): 178–192. doi: 10.2514/1.I010555.
    [2]
    冯颖, 刘忠健. 单粒子效应对飞行器的影响分析及防护技术[J]. 强度与环境, 2011, 38(1): 26–30. doi: 10.3969/j.issn.1006-3919.2011.01.005.

    FENG Ying and LIU Zhongjian. Single event effect analysis on the spacecraft and the technique designed in the protection[J]. Structure & Environment Engineering, 2011, 38(1): 26–30. doi: 10.3969/j.issn.1006-3919.2011.01.005.
    [3]
    GUERTIN S M, SOME R, NSENGIYUMVA P, et al. Radiation specification and testing of heterogenous microprocessor SOCs[C]. 2019 19th European Conference on Radiation and Its Effects on Components and Systems, Montpellier, France, 2022: 1–7. doi: 10.1109/RADECS47380.2019.9745708.
    [4]
    孙宝三, 章宇兵, 岳兆娟, 等. 面向服务的天基计算技术架构研究[J]. 中国电子科学研究院学报, 2018, 13(4): 427–432. doi: 10.3969/j.issn.1673-5692.2018.04.012.

    SUN Baosan, ZHANG Yubing, YUE Zhaojuan, et al. Study on service-oriented architecture of space-borne computing[J]. Journal of China Academy of Electronics and Information Technology, 2018, 13(4): 427–432. doi: 10.3969/j.issn.1673-5692.2018.04.012.
    [5]
    XU Mengwei, ZHANG Li, LI Hongyu, et al. A satellite-born server design with massive tiny chips towards in-space computing[C]. 2022 IEEE International Conference on Satellite Computing, Shenzhen, China, 2022: 1–6. doi: 10.1109/Satellite55519.2022.00009.
    [6]
    董珊. 星载遥感图像实时处理专用芯片的抗辐照电路设计[D]. [硕士论文], 北京理工大学, 2016.

    DONG Shan. The radiation-hardened circuit design of a Space-borne remote sensing image real-time processing chip[D]. [Master dissertation], Beijing Institute of Technology, 2016.
    [7]
    BAE Systems. BAE Systems RAD6000 datasheet[EB/OL]. https://www.digchip.com/datasheets/parts/datasheet/568/RAD6000-pdf.php, 2025.
    [8]
    BEDI R. Spacecraft on-board computing using rad-hard ARM MCUs[EB/OL]. https://www.edn.com/spacecraft-on-board-computing-using-rad-hard-arm-mcus/, 2025.
    [9]
    KELLER J. NOVI chooses VORAGO radiation-hardened microcontroller for space computer that will fly on SpaceX mission[EB/OL]. https://www.militaryaerospace.com/computers/article/55093107/vorago-technologies-radiation-hardened-microcontroller-space, 2025.
    [10]
    SHILOV A. Nvidia's Jetson AI board is ready to go to space[EB/OL]. https://www.tomshardware.com/news/nvidias-jetson-ai-board-is-ready-to-go-to-space, 2025.
    [11]
    Intel. Intel® Movidius™ Myriad™ X vision processing unit 4GB[EB/OL]. https://www.intel.com/content/www/us/en/products/sku/125926/intel-movidius-myriad-x-vision-processing-unit-4gb/specifications.html, 2025.
    [12]
    CRATERE A, GAGLIARDI L, SANCA G A, et al. On-board computer for CubeSats: State-of-the-art and future trends[J]. IEEE Access, 2024, 12: 99537–99569. doi: 10.1109/ACCESS.2024.3428388.
    [13]
    GARCÍA L P, FURANO G, GHIGLIONE M, et al. Advancements in onboard processing of synthetic aperture radar (SAR) data: Enhancing efficiency and real-time capabilities[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2024, 17: 16625–16645. doi: 10.1109/JSTARS.2024.3406155.
    [14]
    HAMILTON D. Medical system design challenges for exploration class space missions[EB/OL]. https://marspapers.org/paper/Hamilton_2024.4_1.9contrib.pdf, 2025.
    [15]
    UNIBAP. SpaceCloud® iX5–106[EB/OL]. https://unibap.com/wp-content/uploads/2023/09/spacecloud-ix5-100-product-overview-v27.pdf, 2025.
    [16]
    ATMEL. Rad-hard 32-bit SPARC embedded processor, TSC695E[EB/OL]. https://pdf.dzsc.com/88889/26096.pdf, 2025.
    [17]
    ATMEL. Rad-hard 32 bit SPARC V8 processor, AT697F[EB/OL]. https://ww1.microchip.com/downloads/aemDocuments/documents/OTH/ProductDocuments/DataSheets/doc7703.pdf, 2025.
    [18]
    SJÄLANDER M, HABINC S, and GAISLER J. LEON4: Fourth generation of the LEON processor[EB/OL]. https://sjalander.com/research/pdf/sjalander-dasia2009.pdf, 2025.
    [19]
    CAES. LEON and NOEL-V SoC architectures[EB/OL]. https://www.frontgrade.com/sites/default/files/documents/Position-Paper-LEON-NOELV-SoC-Architectures-2022-02-22.pdf, 2025.
    [20]
    HE Yating, JI Xiaoyan, ZHAO Rui, et al. A software reconfiguration method for CPU of satellite-board controller[C]. Proceedings of SPIE 13079, Third International Conference on Testing Technology and Automation Engineering, Xi’an, China, 2023: 130790P. doi: 10.1117/12.3015550.
    [21]
    北京微电子技术研究所. 300MHz抗辐照SPARC CPU产品使用手册[EB/OL]. https://www.manuallib.com/download/6B25900E1D2FF9CE7479DEC5434FE780.pdf, 2025.

    Beijing Institute of Microelectronics Technology. User manual for 300MHz radiation-hardened SPARC CPU product[EB/OL]. https://www.manuallib.com/download/6B25900E1D2FF9CE7479DEC5434FE780.pdf, 2025.(查阅网上资料,未找到对应的英文翻译,请确认).
    [22]
    WHITTAKER A. Raspberry Pi Zero powers CubeSat space mission[EB/OL]. https://www.raspberrypi.com/news/raspberry-pi-zero-powers-cubesat-space-mission/, 2025.
    [23]
    Airbus. Defence and space: PureLine[EB/OL]. https://www.airbus.com/sites/g/files/jlcbta136/files/2024-12/Datasheet_SpE_PureLine_Amethyst_2022.pdf, 2025.
    [24]
    VORAGO. VA7230 edge computing microprocessor for space applications[EB/OL]. https://www.voragotech.com/va7230-edge-computing-microprocessor, 2025.
    [25]
    Phytium. 飞腾腾锐D2000处理器数据手册[EB/OL]. https://gitcode.com/Open-source-documentation-tutorial/fdcb3/blob/main/%E9%A3%9E%E8%85%BE%E8%85%BE%E9%94%90D2000%E5%A4%84%E7%90%86%E5%99%A8%E6%95%B0%E6%8D%AE%E6%89%8B%E5%86%8C.pdf, 2025.

    Phytium. Data manual for Phytium Tengrui D2000 series processor[EB/OL]. https://gitcode.com/Open-source-documentation-tutorial/fdcb3/blob/main/%E9%A3%9E%E8%85%BE%E8%85%BE%E9%94%90D2000%E5%A4%84%E7%90%86%E5%99%A8%E6%95%B0%E6%8D%AE%E6%89%8B%E5%86%8C.pdf, 2025.(查阅网上资料,未找到对应的英文翻译,请确认).
    [26]
    Frontgrade Gaisler. NOEL-V[EB/OL]. https://www.gaisler.com/products/noel-v, 2025.
    [27]
    NASA. NASA’s high performance spaceflight computer[EB/OL]. https://www.nasa.gov/wp-content/uploads/2024/07/hpsc-white-paper-tmg-26jun2024-final.pdf, 2025.
    [28]
    国科安芯. MCU芯片-AS32S601数据手册[EB/OL]. https://ansilic.com/wp-content/uploads/2024/09/MCU%E8%8A%AF%E7%89%87-AS32S601%E6%95%B0%E6%8D%AE%E6%89%8B%E5%86%8C.pdf, 2025.

    ANSILIC. MCU chip-AS32S601 data sheet[EB/OL]. https://ansilic.com/wp-content/uploads/2024/09/MCU%E8%8A%AF%E7%89%87-AS32S601%E6%95%B0%E6%8D%AE%E6%89%8B%E5%86%8C.pdf, 2025.(查阅网上资料,未找到对应的英文翻译,请确认).
    [29]
    胡伟武, 汪文祥, 吴瑞阳, 等. 龙芯指令系统架构技术[J]. 计算机研究与发展, 2023, 60(1): 2–16. doi: 10.7544/issn1000-1239.202220196.

    HU Weiwu, WANG Wenxiang, WU Ruiyang, et al. Loongson instruction set architecture technology[J]. Journal of Computer Research and Development, 2023, 60(1): 2–16. doi: 10.7544/issn1000-1239.202220196.
    [30]
    国家航天局. “龙芯”上天 北斗有了“中国芯”[EB/OL]. https://www.cnsa.gov.cn/n6758824/n6759009/n6759043/n6759069/c6577136/content.html, 2025.

    National Space Administration. "Loongson" is launched into space, Beidou now has its own "Chinese core"[EB/OL]. https://www.cnsa.gov.cn/n6758824/n6759009/n6759043/n6759069/c6577136/content.html, 2025.(查阅网上资料,未找到对应的英文翻译,请确认).
    [31]
    龙芯中科. 龙芯1F处理器数据手册[EB/OL]. https://www.docin.com/p-1975324773.html, 2025.

    Loongson Technology. Data sheet for Loongson 1F processor[EB/OL]. https://www.docin.com/p-1975324773.html, 2025. (查阅网上资料,未找到对应的英文翻译,请确认).
    [32]
    Wikipedia. Apollo guidance computer[EB/OL]. https://en.wikipedia.org/wiki/Apollo_Guidance_Computer, 2025.
    [33]
    Wikipedia. IBM RAD6000[EB/OL]. https://en.wikipedia.org/wiki/IBM_RAD6000, 2025.
    [34]
    ESA. LEON’s first flights[EB/OL]. https://www.esa.int/Enabling_Support/Space_Engineering_Technology/LEON_s_first_flights, 2025.
    [35]
    ARM. ARM and VORAGO technologies take space electronics to new heights[EB/OL]. https://newsroom.arm.com/news/arm-and-vorago-technologies-take-space-electronics-to-new-heights, 2025.
    [36]
    ESA. OPS-SAT(Operations nanoSatellite)[EB/OL]. https://www.eoportal.org/satellite-missions/ops-sat#eop-quick-facts-section, 2025.
    [37]
    GARCÉS-SOCARRÁS L M, NIK A, ORTIZ F, et al. Artificial intelligence satellite telecommunication testbed using commercial off-the-shelf chipsets[EB/OL]. arXiv: 2405.18297, https://arxiv.org/abs/2405.18297, 2024. (查阅网上资料,未能确认本条文献修改是否正确,请确认).
    [38]
    LI Lin, ZHANG Shengbing, and WU Juan. Efficient object detection framework and hardware architecture for remote sensing images[J]. Remote Sensing, 2019, 11(20): 2376. doi: 10.3390/rs11202376.
    [39]
    GEIST A, BREWER C, DAVIS M, et al. SpaceCube v3.0 NASA next-generation high-performance processor for science applications[C]. 33rd Annual AIAA/USU Conference on Small Satellites, Logan, UT, 2019: 158.
    [40]
    XILINX. VIRTEX-5QV FPGA FAMILY[EB/OL]. https://www.xilinx.com/publications/prod_mktg/virtex5qv-product-brief.pdf, 2025.
    [41]
    XILINX. XQR Space-grade Kintex™ UltraScale™ and space heritage[EB/OL]. https://www.xilinx.com/content/dam/xilinx/publications/solution-briefs/xilinx-space-solution-brief.pdf, 2025.
    [42]
    Actel. RTAX-S testing and reliability update[EB/OL]. https://ww1.microchip.com/downloads/aemdocuments/documents/fpga/ProductDocuments/SupportingCollateral/rtaxs_rel_test_wp.pdf, 2025.
    [43]
    Microchip. RTG4TM radiation-tolerant FPGAs[EB/OL]. https://www.microchip.com/en-us/products/fpgas-and-plds/radiation-tolerant-fpgas/rtg4-radiation-tolerant-fpgas, 2025.
    [44]
    LEON V, STAMOULIAS I, LENTARIS G, et al. Development and testing on the European space-grade BRAVE FPGAs: Evaluation of NG-large using high-performance DSP benchmarks[J]. IEEE Access, 2021, 9: 131877–131892. doi: 10.1109/ACCESS.2021.3114502.
    [45]
    俞军, 徐烈伟, 俞剑, 等. 高可靠亿门级FPGA芯片关键技术及产业化[Z]. 复旦大学, 2020.

    YU Jun, XU Liewei, YU Jian, et al. Key technologies and industrialization of high-reliability billion-gate FPGA chips[Z]. Fudan University, 2020. (查阅网上资料, 未找到对应的英文翻译, 请确认).
    [46]
    PERSYN S C, MCLELLAND M, EPPERLY N, et al. Evolution of digital signal processing based spacecraft computing solutions[C]. IEEE Aerospace Conference, Big Sky, USA, 2002: 4. doi: 10.1109/AERO.2002.1036902.
    [47]
    CORDIS. DSP for space applications[EB/OL]. https://cordis.europa.eu/project/id/262798/reporting, 2025.
    [48]
    ADAMS C, SPAIN A, PARKER J, et al. Towards an integrated GPU accelerated SoC as a flight computer for small satellites[C]. 2019 IEEE Aerospace Conference, Big Sky, USA, 2019: 1–7. doi: 10.1109/AERO.2019.8741765.
    [49]
    WANG Mi, ZHANG Zhiqi, ZHU Ying, et al. Embedded GPU implementation of sensor correction for on-board real-time stream computing of high-resolution optical satellite imagery[J]. Journal of Real-Time Image Processing, 2018, 15(3): 565–581. doi: 10.1007/s11554-017-0741-0.
    [50]
    ZHANG Zhiqi, WEI Lu, XIANG Shao, et al. Task-driven onboard real-time panchromatic multispectral fusion processing approach for high-resolution optical remote sensing satellite[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2023, 16: 7636–7661. doi: 10.1109/JSTARS.2023.3305231.
    [51]
    KESUMA H, AHMADI-POUR S, JOSEPH A, et al. Artificial intelligence implementation on voice command and sensor anomaly detection for enhancing human habitation in space mission[C]. 2019 9th International Conference on Recent Advances in Space Technologies, Istanbul, Turkey, 2019: 579–584. doi: 10.1109/RAST.2019.8767447.
    [52]
    SABOGAL S, GEORGE A, and CRUM G. ReCoN: A reconfigurable CNN acceleration framework for hybrid semantic segmentation on hybrid SoCs for space applications[C]. 2019 IEEE Space Computing Conference, Pasadena, USA, 2019: 41–52. doi: 10.1109/SpaceComp.2019.00010.
    [53]
    航宇微. 高性能嵌入式AI处理器Yulong810A简介[EB/OL]. https://www.myorbita.net/uploadfiles/2024/10/2024102316010919.pdf, 2025.

    Aero-Chips. Introduction to high-performance embedded AI processor Yulong810A[EB/OL]. https://www.myorbita.net/uploadfiles/2024/10/2024102316010919.pdf, 2025.(查阅网上资料,未找到对应的英文翻译,请确认).
    [54]
    MATSUO I B M, ZHAO Long, and LEE W J. A dual modular redundancy scheme for CPU–FPGA platform-based systems[J]. IEEE Transactions on Industry Applications, 2018, 54(6): 5621–5629. doi: 10.1109/TIA.2018.2859386.
    [55]
    SIM M T and ZHUANG Yanyan. A dual lockstep processor system-on-a-chip for fast error recovery in safety-critical applications[C]. IECON 2020 the 46th Annual Conference of the IEEE Industrial Electronics Society, Singapore, Singapore, 2020: 2231–2238. doi: 10.1109/IECON43393.2020.9255188.
    [56]
    FUCHS C M, CHOU Pai, WEN Xiaoqing, et al. A fault-tolerant MPSoC For CubeSats[C]. 2019 IEEE International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems, Noordwijk, Netherlands, 2019: 1–6. doi: 10.1109/DFT.2019.8875417.
    [57]
    CALDWELL D W and RENNELS D A. A minimalist fault-tolerant microcontroller design for embedded spacecraft computing[J]. The Journal of Supercomputing, 2000, 16(1/2): 7–25. doi: 10.1023/A:1008142728784.
    [58]
    GEIST A, BREWER C, DAVIS M, et al. SpaceCube v3.0 NASA next-generation high-performance processor for science applications[C]. 33rd Annual AIAA/USU Conference on Small Satellites, Logan, UT, 2019.
    [59]
    HARIKRISHNAN P, KARRAS K, CRUZ N, et al. SpaceWire based reconfiguration and redundancy management of COTS based highly integrated onboard computer[C]. 2023 European Data Handling & Data Processing Conference, Juan Les Pins, France, 2023: 1–6. doi: 10.23919/EDHPC59100.2023.10396158.
    [60]
    PENG Qiao, WAN Xiaoguo, and ZHANG Jiliang. FOSA: A highly fault-tolerant operating system architecture[C]. 2024 IEEE International Test Conference in Asia, Changsha, China, 2024: 1–6. doi: 10.1109/ITC-Asia62534.2024.10661344.
    [61]
    张吉良, 柴先平, 王爽, 等. 一种软错误防护方法、装置、设备及存储介质[P]. 中国, CN202310715223.5, 2023.

    ZHANG Jiliang, CHAI Xianping, WANG Shuang, et al. Soft error protection method and device, equipment and storage medium[P]. CN, CN202310715223.5, 2023.
    [62]
    FUCHS C M, STEFANOV T P, MURILLO N M, et al. Bringing fault-tolerant Gigahertz-computing to space: A multi-stage software-side fault-tolerance approach for miniaturized spacecraft[C]. 2017 IEEE 26th Asian Test Symposium, Taipei, China, 2017: 100–107. doi: 10.1109/ATS.2017.30.
    [63]
    ROGENMOSER M, WIESE P, FORLIN B E, et al. Trikarenos: Design and experimental characterization of a fault-tolerant 28-nm RISC-V-based SoC[J]. IEEE Transactions on Nuclear Science, 2025, 72(8): 2783–2792. doi: 10.1109/TNS.2025.3564739.
    [64]
    ROGENMOSER M, TORTORELLA Y, ROSSI D, et al. Hybrid modular redundancy: Exploring modular redundancy approaches in RISC-V multi-core computing clusters for reliable processing in space[J]. ACM Transactions on Cyber-Physical Systems, 2025, 9(1): 8. doi: 10.1145/3635161.
    [65]
    ROGENMOSER M, WISTOFF N, VOGEL P, et al. On-demand redundancy grouping: Selectable soft-error tolerance for a multicore cluster[C]. 2022 IEEE Computer Society Annual Symposium on VLSI, Nicosia, Cyprus, 2022: 398–401. doi: 10.1109/ISVLSI54635.2022.00089.
    [66]
    DÖRFLINGER A, Guan Yejun, MICHALIK S, et al. ECC memory for fault tolerant RISC-V processors[C]. 33rd International Conference on Architecture of Computing Systems, Aachen, Germany, 2020: 44–55. doi: 10.1007/978-3-030-52794-5_4.
    [67]
    FIFIELD J A and STAPPER C H. High-speed on-chip ECC for synergistic fault-tolerance memory chips[J]. IEEE Journal of Solid-State Circuits, 1991, 26(10): 1449–1452. doi: 10.1109/4.90100.
    [68]
    LEROUX P. Radiation tolerant electronics[J]. Electronics, 2019, 8(7): 730. doi: 10.3390/electronics8070730.
    [69]
    NICOLAIDIS M. Design for soft error mitigation[J]. IEEE Transactions on Device and Materials Reliability, 2005, 5(3): 405–418. doi: 10.1109/TDMR.2005.855790.
    [70]
    BAUMANN R C. Radiation-induced soft errors in advanced semiconductor technologies[J]. IEEE Transactions on Device and Materials Reliability, 2005, 5(3): 305–316. doi: 10.1109/TDMR.2005.853449.
    [71]
    SLAYMAN C W. Cache and memory error detection, correction, and reduction techniques for terrestrial servers and workstations[J]. IEEE Transactions on Device and Materials Reliability, 2005, 5(3): 397–404. doi: 10.1109/TDMR.2005.856487.
    [72]
    LU Zhaojun, ZHAO Qi, CHEN Qidong, et al. A survey on fault-tolerance methods for SRAM-based FPGAs in radiation environments[C]. 2023 IEEE 32nd Asian Test Symposium, Beijing, China, 2023: 1–6. doi: 10.1109/ATS59501.2023.10318028.
    [73]
    SCHWANK J R, FERLET-CAVROIS V, SHANEYFELT M R, et al. Radiation effects in SOI technologies[J]. IEEE Transactions on Nuclear Science, 2003, 50(3): 522–538. doi: 10.1109/TNS.2003.812930.
    [74]
    LIU Jia, LI Yao, ZHANG Ruitao, et al. Development of a radiation-hardened standard cell library for 65nm CMOS technology[C]. 2016 China Semiconductor Technology International Conference, Shanghai, China, 2016: 1–3. doi: 10.1109/CSTIC.2016.7464080.
    [75]
    GREESHMA N and JAMUNA S. Design and analysis of radiation hardened by design non-volatile RAM for space applications[J]. International Journal of Scientific and Research Publications, 2023, 13(6): 397–409. doi: 10.29322/IJSRP.13.06.2023.p13848.
    [76]
    LEYVA-MAYORGA I, MARTINEZ-GOST M, MORETTI M, et al. Satellite edge computing for real-time and very-high resolution earth observation[J]. IEEE Transactions on Communications, 2023, 71(10): 6180–6194. doi: 10.1109/TCOMM.2023.3296584.
    [77]
    WANG Yixin, QIU Xiaolan, and WEN Xuejiao. High-resolution SAR imaging characteristics for multiple scattering of rotating targets[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2024, 17: 9974–9988. doi: 10.1109/JSTARS. 2024.3382038. doi: 10.1109/JSTARS.2024.3382038. doi: 10.1109/JSTARS.2024.3382038.doi:10.1109/JSTARS.2024.3382038.
    [78]
    LIU Haoting. Autonomous navigation for mars exploration[M]. PEZZELLA G and VIVIANI A. Mars Exploration - A Step Forward. IntechOpen, 2020. doi: 10.5772/intechopen.92093.(查阅网上资料,未找到出版地信息,请补充).
    [79]
    ZHANG Qinyu, XU Liang, HUANG Jianhao, et al. Distributed satellite information networks: Architecture, enabling technologies, and trends[J]. Science China Information Sciences, 2025, 68(8): 190301. doi: 10.1007/s11432-024-4408-1.
    [80]
    Advanced Cooling Technologies. VME/VPX card frames[EB/OL]. https://www.1-act.com/thermal-solutions/embedded-computing/vme-vpx/, 2025.
    [81]
    薄鹏, 汪悦. 面向航天器型号的COTS元器件选用策略[J]. 航天器环境工程, 2023, 40(4): 430–436. doi: 10.12126/see.2023102.

    BAO Peng and WANG Yue. Selection strategy of COTS components for spacecraft[J]. Spacecraft Environment Engineering, 2023, 40(4): 430–436. doi: 10.12126/see.2023102.
    [82]
    张泽明, 张楠. 航天任务中宇航级和COTS元器件的比较和选择[J]. 环境技术, 2023, 41(7): 75–79. doi: 10.3969/j.issn.1004-7204.2023.07.016.

    ZHANG Zeming and ZHANG Nan. Comparison and selection of space-grade and COTS components in space missions[J]. Environmental Technology, 2023, 41(7): 75–79. doi: 10.3969/j.issn.1004-7204.2023.07.016.
    [83]
    侯小宇. 符合我国航空工业发展现状的COTS IP适航要求研究与探索[J]. 民航学报, 2022, 6(4): 82–88,95. doi: 10.3969/j.issn.2096-4994.2022.04.019.

    HOU Xiaoyu. Research on and exploration of COTS IP airworthiness requirements for China’s aviation industry[J]. Journal of Civil Aviation, 2022, 6(4): 82–88,95. doi: 10.3969/j.issn.2096-4994.2022.04.019.
    [84]
    姜盛鑫, 韩天龙, 施帆, 等. 航天COTS产品标准化发展的透视与浅析[J]. 航天标准化, 2022(1): 36–39,49. doi: 10.19314/j.cnki.1009-234x.2022.01.005.

    JIANG Shengxin, HAN Tianlong, SHI Fan, et al. Perspective and analysis of the standardization development of COTS for space[J]. Aerospace Standardization, 2022(1): 36–39,49. doi: 10.19314/j.cnki.1009-234x.2022.01.005.
    [85]
    NASA. Commercial orbital transportation services: A new era in spaceflight[EB/OL]. https://www.nasa.gov/wp-content/uploads/2016/08/sp-2014-617.pdf, 2025.
    [86]
    DOUGLAS S, MAJEWICZ P. Enabling COTS EEEE parts for NASA missions[EB/OL]. https://ntrs.nasa.gov/api/citations/20250001580/downloads/MRQW_20250001580_v2.pdf, 2025.
    [87]
    WEIGAND R. RISC-V: A rising star in space[EB/OL]. http://microelectronics.esa.int/papers/PresentationSummit-EUR-RISC-V-RisingStarInSpace-2023-06-08.pdf, 2025.
    [88]
    Raspberry Pi. Raspberry Pi processors[EB/OL]. https://www.raspberrypi.com/documentation/computers/processors.html, 2025.
    [89]
    NVIDIA. Jetson TX2 module[EB/OL]. https://developer.nvidia.com/embedded/jetson-tx2, 2025.
    [90]
    RAMOS R. New tech Tuesdays: Starlink: The satellite-based internet service by SpaceX[EB/OL]. https://my.mouser.com/blog/new-tech-starlink-satellite-based-internet, 2025.
    [91]
    安信证券. 航天产业研究: 卫星互联网蓄势待发[EB/OL]. https://file.iyanbao.com/pdf/d9d90-e3cc170f-bd84-4f31-8692-a4499289d9bb.pdf, 2025.

    Essence Securities. Aerospace industry research: Satellite internet is ready to take off[EB/OL]. https://file.iyanbao.com/pdf/d9d90-e3cc170f-bd84-4f31-8692-a4499289d9bb.pdf, 2025.(查阅网上资料,未找到对应的英文翻译,请确认).
    [92]
    星测未来. 高性能计算助力卫星智能化[EB/OL]. https://mp.weixin.qq.com/s/mbQT4VkcI-i7iUJysnYXJw, 2025.

    StarDetect. High-performance computing powers satellite intelligence[EB/OL]. https://mp.weixin.qq.com/s/mbQT4VkcI-i7iUJysnYXJw, 2025. (查阅网上资料,未找到对应的英文翻译,请确认).
    [93]
    VASKA C, et al. The Cubesat communication platform (CCP) – mission overview and ConOps[C]. The 16th International Conference on Space Operations 2021, 2021. (查阅网上资料, 未找到本条文献信息, 请确认).
    [94]
    FURANO G, TAVOULARIS A, and ROVATTI M. AI in space: Applications examples and challenges[C]. 2020 IEEE International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems, Frascati, Italy, 2020: 1–6. doi: 10.1109/DFT50435.2020.9250908.
    [95]
    MALONE S, SAENZ P, and PHELAN P. RISC-V processors for spaceflight embedded platforms[C]. 2023 IEEE Aerospace Conference, Big Sky, USA, 2023: 1–11. doi: 10.1109/AERO55745.2023.10115850.
    [96]
    WILSON C. SpaceCube v3.0 mini[EB/OL]. https://ntrs.nasa.gov/api/citations/20190027308/downloads/20190027308.pdf, 2025.
    [97]
    香港航天科技集团. 香港航天科技与中国科学院上海微系统与信息技术研究所合作[EB/OL]. https://www.prnasia.com/story/332577-1.shtml, 2025.

    Hong Kong Aerospace Technology Group. Hong Kong aerospace technology collaborates with the Shanghai Institute of Microsystems and information technology, Chinese Academy of Sciences[EB/OL]. https://ntrs.nasa.gov/api/citations/20190027308/downloads/20190027308.pdf, 2025. (查阅网上资料,未找到对应的英文翻译,请确认).
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(2)  / Tables(6)

    Article Metrics

    Article views (38) PDF downloads(6) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return