| Citation: | JIANG Danping, DAI Zibin, LIU Yanjiang, ZHOU Zhaoxu, SONG Xiaoyu. Bayesian Optimization-Driven Design Space Exploration Method for Coarse-Grained Reconfigurable Cipher Logic Array[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250624 |
| [1] |
DESHWAL A, JAYAKODI N K, JOARDAR B K, et al. MOOS: A multi-objective design space exploration and optimization framework for NoC enabled manycore systems[J]. ACM Transactions on Embedded Computing Systems (TECS), 2019, 18(5s): 77. doi: 10.1145/3358206.
|
| [2] |
KIRKPATRICK S, GELATT JR C D, and VECCHI M P. Optimization by simulated annealing[J]. Science, 1983, 220(4598): 671–680. doi: 10.1126/science.220.4598.671.
|
| [3] |
DEB K, PRATAP A, AGARWAL S, et al. A fast and elitist multiobjective genetic algorithm: NSGA-II[J]. IEEE Transactions on Evolutionary Computation, 2002, 6(2): 182–197. doi: 10.1109/4235.996017.
|
| [4] |
ZHANG Qingfu and LI Hui. MOEA/D: A multiobjective evolutionary algorithm based on decomposition[J]. IEEE Transactions on Evolutionary Computation, 2007, 11(6): 712–731. doi: 10.1109/TEVC.2007.892759.
|
| [5] |
WENG Jian, LIU Sihao, DADU V, et al. DSAGEN: Synthesizing programmable spatial accelerators[C]. 2020 ACM/IEEE 47th Annual International Symposium on Computer Architecture, Valencia, Spain, 2020: 268–281. doi: 10.1109/ISCA45697.2020.00032.
|
| [6] |
TAN Cheng, XIE Chenhao, LI Ang, et al. AURORA: Automated refinement of coarse-grained reconfigurable accelerators[C]. 2021 Design, Automation & Test in Europe Conference & Exhibition, Grenoble, France, 2021: 1388–1393. doi: 10.23919/DATE51398.2021.9473955.
|
| [7] |
BANDARA T K, WIJERATHNE D, MITRA T, et al. REVAMP: A systematic framework for heterogeneous CGRA realization[C]. Proceedings of the 27th ACM International Conference on Architectural Support for Programming Languages and Operating Systems, Lausanne, Switzerland, 2022: 918–932. doi: 10.1145/3503222.3507772.
|
| [8] |
JOARDAR B K, KIM R G, DOPPA J R, et al. Learning-based application-agnostic 3D NoC design for heterogeneous manycore systems[J]. IEEE Transactions on Computers, 2019, 68(6): 852–866. doi: 10.1109/TC.2018.2889053.
|
| [9] |
QI Sirui, LI Yingheng, PASRICHA S, et al. MOELA: A multi-objective evolutionary/learning design space exploration framework for 3D heterogeneous manycore platforms[C]. 2023 Design, Automation & Test in Europe Conference & Exhibition, Antwerp, Belgium, 2023: 1–6. doi: 10.23919/DATE56975.2023.10137276.
|
| [10] |
KIM R G, DOPPA J R, and PANDE P P. Machine learning for design space exploration and optimization of manycore systems[C]. 2018 IEEE/ACM International Conference on Computer-Aided Design, San Diego, USA, 2018: 1–6. doi: 10.1145/3240765.3243483.
|
| [11] |
LOPES A S B and PEREIRA M M. A machine learning approach to accelerating DSE of reconfigurable accelerator systems[C]. 2020 33rd Symposium on Integrated Circuits and Systems Design, Campinas, Brazil, 2020: 1–6. doi: 10.1109/SBCCI50935.2020.9189899.
|
| [12] |
LI Jingyuan, QIU Yunhui, ZHU Guowei, et al. THRAM: A template-based heterogeneous CGRA modeling framework supporting fast DSE[C]. 2023 IEEE International Symposium on Circuits and Systems, Monterey, USA, 2023: 1–5. doi: 10.1109/ISCAS46773.2023.10182204.
|
| [13] |
PENG Bingbing, SUN Shaoyang, DAI Yuan, et al. PRAD: A Bayesian optimization-based DSE framework for parameterized reconfigurable architecture design[C]. 2023 IEEE 31st Annual International Symposium on Field-Programmable Custom Computing Machines, Marina Del Rey, USA, 2023: 226–226. doi: 10.1109/FCCM57271.2023.00054.
|
| [14] |
KUANG Huizhen, ZHENG Su, and WANG Lingli. Automated design space exploration of coarse-grained reconfigurable architecture via Bayesian optimization[C]. 2022 IEEE 16th International Conference on Solid-State & Integrated Circuit Technology, Nangjing, China, 2022: 1–3. doi: 10.1109/ICSICT55466.2022.9963336.
|
| [15] |
DAI Yuan, LI Jingyuan, ZHU Qilong, et al. HETA: A heterogeneous temporal CGRA modeling and design space exploration via Bayesian optimization[J]. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2024, 32(3): 505–518. doi: 10.1109/TVLSI.2023.3344536.
|
| [16] |
BAI Chen, SUN Qi, ZHAI Jianwang, et al. BOOM-Explorer: RISC-V BOOM microarchitecture design space exploration framework[C]. 2021 IEEE/ACM International Conference on Computer Aided Design, Munich, Germany, 2021: 1–9. doi: 10.1109/ICCAD51958.2021.9643455.
|
| [17] |
LI Jingyuan, HU Yihan, DAI Yuan, et al. AUGER: A multi-objective design space exploration framework for CGRAs[C]. 2023 International Conference on Field Programmable Technology, Yokohama, Japan, 2023: 88–95. doi: 10.1109/ICFPT59805.2023.00015.
|
| [18] |
MENG Pingfan, ALTHOFF A, GAUTIER Q, et al. Adaptive threshold non-Pareto elimination: Re-thinking machine learning for system level design space exploration on FPGAs[C]. 2016 Design, Automation & Test in Europe Conference & Exhibition, Dresden, Germany, 2016: 918–923.
|
| [19] |
KIM Y, MAHAPATRA R N, and CHOI K. Design space exploration for efficient resource utilization in coarse-grained reconfigurable architecture[J]. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2010, 18(10): 1471–1482. doi: 10.1109/TVLSI.2009.2025280.
|
| [20] |
CHEN Sichao, MAO Yiqing, DAI Yuan, et al. FCE: A fast CGRA architecture exploration framework[C]. 2024 IEEE 17th International Conference on Solid-State & Integrated Circuit Technology, Zhuhai, China, 2024: 1–3. doi: 10.1109/ICSICT62049.2024.10832017.
|
| [21] |
王铎, 刘景磊, 严明玉, 等. 面向处理器微架构设计空间探索的加速方法综述[J]. 计算机研究与发展, 2025, 62(1): 22–57. doi: 10.7544/issn1000-1239.202330348.
WANG Duo, LIU Jinglei, YAN Mingyu, et al. Acceleration methods for processor microarchitecture design space exploration: A survey[J]. Journal of Computer Research and Development, 2025, 62(1): 22–57. doi: 10.7544/issn1000-1239.202330348.
|