Citation: | TAN Haonan, DONG Mei, CHEN Boxiao. The Research on Interference Suppression Algorithms for Millimeter-Wave Radar in Multi-Interference Environments[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250617 |
[1] |
黄岩, 张慧, 兰吕鸿康, 等. 汽车毫米波雷达信号处理技术综述[J]. 雷达学报, 2023, 12(5): 923–970. doi: 10.12000/JR23119.
HUANG Yan, ZHANG Hui, LAN Lyuhongkang, et al. Overview of signal processing techniques for automotive millimeter-wave radar[J]. Journal of Radars, 2023, 12(5): 923–970. doi: 10.12000/JR23119.
|
[2] |
KUMBUL U, CHEN Yue, PETROV N, et al. Impacts of mutual interference analysis in FMCW automotive radar[C]. Proceedings of 2023 17th European Conference on Antennas and Propagation, Florence, Italy, 2023: 1–5. doi: 10.23919/EuCAP57121.2023.10133503.
|
[3] |
WANG Yunxuan, HUANG Yan, LIU Jiang, et al. Interference mitigation for automotive FMCW radar with tensor decomposition[J]. IEEE Transactions on Intelligent Transportation Systems, 2024, 25(8): 9204–9223. doi: 10.1109/TITS.2024.3375658.
|
[4] |
冯翔, 刘涛, 崔文卿, 等. 基于双视角时序特征融合的毫米波雷达手势数字识别研究[J]. 电子与信息学报, 2023, 45(6): 2134–2143. doi: 10.11999/JEIT220687.
FENG Xiang, LIU Tao, CUI Wenqing, et al. Handwriting number recognition based on millimeter-wave radar with dual-view feature fusion network[J]. Journal of Electronics & Information Technology, 2023, 45(6): 2134–2143. doi: 10.11999/JEIT220687.
|
[5] |
LI Zhuo, ZHANG Jun, LI Biyuan, et al. An adaptive filtering algorithm based on range-Doppler information guidance[J]. IEEE Access, 2023, 11: 145661–145678. doi: 10.1109/access.2023.3344631.
|
[6] |
ZHONG Wanting, RODRÍGUEZ-PIÑEIRO J, YIN Xuefeng, et al. REDTS: RLS-enhanced Doppler target separation for automotive FMCW radar systems[C]. Proceedings of 2025 19th European Conference on Antennas and Propagation, Stockholm, Sweden, 2025: 1–5. doi: 10.23919/eucap63536.2025.10999395.
|
[7] |
赵雅琴, 宋雨晴, 吴晗, 等. 基于DenseNet和卷积注意力模块的高精度手势识别[J]. 电子与信息学报, 2024, 46(3): 967–976. doi: 10.11999/JEIT230165.
ZHAO Yaqin, SONG Yuqing, WU Han, et al. High-precision gesture recognition based on DenseNet and convolutional block attention module[J]. Journal of Electronics & Information Technology, 2024, 46(3): 967–976. doi: 10.11999/jeit230165. doi: 10.11999/JEIT230165.
|
[8] |
OVERDEVEST J, KOPPELAAR A G C, BEKOOIJ M J G, et al. Signal reconstruction for FMCW radar interference mitigation using deep unfolding[C]. Proceedings of 2023 IEEE International Conference on Acoustics, Speech and Signal Processing, Rhodes Island, Greece, 2023: 1–5. doi: 10.1109/icassp49357.2023.10096297.
|
[9] |
CHOI J H, LEE H B, CHOI J W, et al. Mutual interference suppression using clipping and weighted-envelope normalization for automotive FMCW radar systems[J]. IEICE Transactions on Communications, 2016, E99. B(1): 280–287. doi: 10.1587/transcom.2015EBP3152.
|
[10] |
KILLICK R, FEARNHEAD P, and ECKLEY I A. Optimal detection of changepoints with a linear computational cost[J]. Journal of the American Statistical Association, 2012, 107(500): 1590–1598. doi: 10.1080/01621459.2012.737745.
|
[11] |
LIU Zhenyu, LU Wei, WU Jiayan, et al. A PELT-KCN algorithm for FMCW radar interference suppression based on signal reconstruction[J]. IEEE Access, 2020, 8: 45108–45118. doi: 10.1109/access.2020.2977098.
|
[12] |
LIM S, LEE S, CHOI J H, et al. Mutual interference suppression and signal restoration in automotive FMCW radar systems[J]. IEICE Transactions on Communications, 2019, E102. B(6): 1198–1208. doi: 10.1587/transcom.2018ebp3175.
|
[13] |
JUNG J, LIM S, KIM J, et al. Interference suppression and signal restoration using Kalman filter in automotive radar systems[C]. Proceedings of 2020 IEEE International Radar Conference, Washington, USA, 2020: 726–731. doi: 10.1109/RADAR42522.2020.9114723.
|
[14] |
RAMEEZ M, DAHL M, and PETTERSSON M I. Autoregressive model-based signal reconstruction for automotive radar interference mitigation[J]. IEEE Sensors Journal, 2021, 21(5): 6575–6586. doi: 10.1109/JSEN.2020.3042061.
|
[15] |
NEEMAT S, KRASNOV O, and YAROVOY A. An interference mitigation technique for FMCW radar using beat-frequencies interpolation in the STFT domain[J]. IEEE Transactions on Microwave Theory and Techniques, 2019, 67(3): 1207–1220. doi: 10.1109/TMTT.2018.2881154.
|
[16] |
KUMUDA D K, SRIHARI P, SHESHAGIRI D, et al. A mutual interference mitigation algorithm for dense on-road automotive radars scenario[C]. Proceedings of 2023 IEEE International Conference on Electronics, Computing and Communication Technologies, Bangalore, India, 2023: 1–6. doi: 10.1109/conecct57959.2023.10234787.
|
[17] |
WENG Youlong, CHEN Guangzhi, CHEN Jingxuan, et al. FRFT-based interference suppression for automotive FMCW radars[J]. IEEE Transactions on Vehicular Technology, 2025, 74(6): 8953–8965. doi: 10.1109/tvt.2025.3539790.
|
[18] |
MAZHER K U, GRAFF A, GONZÁLEZ-PRELCIC N, et al. Automotive radar interference characterization: FMCW or PMCW?[C]. Proceedings of 2024 IEEE International Conference on Acoustics, Speech and Signal Processing, Seoul, Korea, Republic of, 2024: 13406–13410. doi: 10.1109/icassp48485.2024.10448296.
|
[19] |
WU Yubo, HOU Y T, LI A, et al. Real-time interference mitigation for automotive radar[C]. Proceedings of 2023 IEEE Radar Conference, San Antonio, USA, 2023: 1–6. doi: 10.1109/radarconf2351548.2023.10149557.
|
[20] |
WANG Yunxuan, HUANG Yan, WEN Cai, et al. Mutual interference mitigation for automotive FMCW radar with time and frequency domain decomposition[J]. IEEE Transactions on Microwave Theory and Techniques, 2023, 71(11): 5028–5044. doi: 10.1109/TMTT.2023.3275816.
|
[21] |
REBUT J, OUAKNINE A, MALIK W, et al. Raw high-definition radar for multi-task learning[C]. Proceedings of 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, USA, 2022: 17000–17009. doi: 10.1109/cvpr52688.2022.01651.
|