| Citation: | QIU Xianyi, WEN Jinbo, KANG Jiawen, ZHANG Tao, CAI Chengjun, LIU Jiqiang, XIAO Ming. A Reliable Service Chain Option for Global Migration of Intelligent Twins in Vehicular Metaverses[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250612 |
| [1] |
XU Minrui, NIYATO D, ZHANG Hongliang, et al. Generative AI-empowered effective physical-virtual synchronization in the vehicular metaverse[C]. 2023 IEEE International Conference on Metaverse Computing, Networking and Applications (MetaCom), Kyoto, Japan, 2023: 607–611. doi: 10.1109/MetaCom57706.2023.00106.
|
| [2] |
ZHANG Hui, LUO Guiyang, LI Yidong, et al. Parallel vision for intelligent transportation systems in metaverse: Challenges, solutions, and potential applications[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2023, 53(6): 3400–3413. doi: 10.1109/TSMC.2022.3228314.
|
| [3] |
JI Baofeng, ZHANG Xueru, MUMTAZ S, et al. Survey on the internet of vehicles: Network architectures and applications[J]. IEEE Communications Standards Magazine, 2020, 4(1): 34–41. doi: 10.1109/MCOMSTD.001.1900053.
|
| [4] |
ZHOU Pengyuan, ZHU Jinjing, WANG Yiting, et al. Vetaverse: A survey on the intersection of Metaverse, vehicles, and transportation systems[EB/OL]. https://doi.org/10.48550/arXiv.2210.15109, 2022.
|
| [5] |
WEN Jinbo, KANG Jiawen, XIONG Zehui, et al. Task freshness-aware incentive mechanism for vehicle twin migration in vehicular metaverses[C]. 2023 IEEE International Conference on Metaverse Computing, Networking and Applications (MetaCom), Kyoto, Japan, 2023: 481–487. doi: 10.1109/MetaCom57706.2023.00089.
|
| [6] |
ZHONG Yue, WEN Jinbo, ZHANG Junhong, et al. Blockchain-assisted twin migration for vehicular metaverses: A game theory approach[J]. Transactions on Emerging Telecommunications Technologies, 2023, 34(12): e4856. doi: 10.1002/ett.4856.
|
| [7] |
KUMARI P and JAIN A K. A comprehensive study of DDoS attacks over IoT network and their countermeasures[J]. Computers & Security, 2023, 127: 103096. doi: 10.1016/j.cose.2023.103096.
|
| [8] |
ZHANG Tao, XU Changqiao, ZOU Ping, et al. How to mitigate DDoS intelligently in SD-IoV: A moving target defense approach[J]. IEEE Transactions on Industrial Informatics, 2023, 19(1): 1097–1106. doi: 10.1109/TII.2022.3190556.
|
| [9] |
KANG Jiawen, CHEN Junlong, XU Minrui, et al. UAV-assisted dynamic avatar task migration for vehicular metaverse services: A multi-agent deep reinforcement learning approach[J]. IEEE/CAA Journal of Automatica Sinica, 2024, 11(2): 430–445. doi: 10.1109/JAS.2023.123993.
|
| [10] |
TONG Yongju, KANG Jiawen, CHEN Junlong, et al. Diffusion-based reinforcement learning for dynamic UAV-assisted vehicle twins migration in vehicular metaverses[C]. 2024 IEEE Global Communications Conference, Cape Town, South Africa, 2024: 5156–5161. doi: 10.1109/GLOBECOM52923.2024.10901050.
|
| [11] |
AlKHOORI F A, KHAN L U, GUIZANI M, et al. Latency-aware placement of vehicular metaverses using virtual network functions[J]. Simulation Modelling Practice and Theory, 2024, 133: 102899. doi: 10.1016/j.simpat.2024.102899.
|
| [12] |
AHILAL A, BRAUD T, LEE L H, et al. Toward a traffic metaverse with shared vehicle perception[J]. IEEE Communications Standards Magazine, 2023, 7(3): 40–47. doi: 10.1109/MCOMSTD.0008.2200067.
|
| [13] |
QIU Yu, CHEN Min, HUANG Hebin, et al. Spotlighter: Backup age-guaranteed immersive virtual vehicle service provisioning in edge-enabled vehicular metaverse[J]. IEEE Transactions on Mobile Computing, 2024, 23(12): 13375–13391. doi: 10.1109/TMC.2024.3425896.
|
| [14] |
JEREMIAH S R, YANG L T, and PARK J H. Digital twin-assisted resource allocation framework based on edge collaboration for vehicular edge computing[J]. Future Generation Computer Systems, 2024, 150: 243–254. doi: 10.1016/j.future.2023.09.001.
|
| [15] |
KHAN L U, GUIZANI M, NIYATO D, et al. Metaverse for wireless systems: Architecture, advances, standardization, and open challenges[J]. Internet of Things, 2024, 25: 101121. doi: 10.1016/j.iot.2024.101121.
|
| [16] |
CHEN Junlong, KANG Jiawen, XU Minrui, et al. Multiagent deep reinforcement learning for dynamic avatar migration in AIoT-enabled vehicular metaverses with trajectory prediction[J]. IEEE Internet of Things Journal, 2024, 11(1): 70–83. doi: 10.1109/JIOT.2023.3296075.
|
| [17] |
KANG Yingkai, WEN Jinbo, KANG Jiawen, et al. Hybrid-generative diffusion models for attack-oriented twin migration in vehicular metaverses[J]. IEEE Transactions on Vehicular Technology, 2025, 74(9): 14720–14734. doi: 10.1109/TVT.2025.3566034.
|
| [18] |
NIU Xin and LU Jiazhang. Moving target defense controller of mobile system based on Openflow sensor security scheme[J]. Computer Communications, 2020, 161: 142–149. doi: 10.1016/j.comcom.2020.05.004.
|
| [19] |
GAO Chungang and WANG Yongjie. Reinforcement learning based self-adaptive moving target defense against DDoS attacks[J]. Journal of Physics: Conference Series, 2021, 1812: 012039. doi: 10.1088/1742-6596/1812/1/012039.
|
| [20] |
ZHANG Tao, XU Changqiao, ZOU Ping, et al. How to mitigate DDoS intelligently in SD-IoV: A moving target defense approach[J]. IEEE Transactions on Industrial Informatics, 2023, 19(1): 1097–1106. doi: 10.1109/TII.2022.3190556. (查阅网上资料,本条文献与第8条文献重复,请确认).
|
| [21] |
HYDER M F and FATIMA T. Towards crossfire distributed denial of service attack protection using intent-based moving target defense over software-defined networking[J]. IEEE Access, 2021, 9: 112792–112804. doi: 10.1109/ACCESS.2021.3103845.
|
| [22] |
SHAAR F and EFE A. DDoS attacks and impacts on various cloud computing components[J]. International Journal of Information Security Science, 2018, 7(1): 26–48.
|
| [23] |
SHANNON C E. A mathematical theory of communication[J]. The Bell System Technical Journal, 1948, 27(3): 379–423. doi: 10.1002/j.1538-7305.1948.tb01338.x.
|
| [24] |
REN Pei, QIAO Xiuquan, HUANG Yakun, et al. Edge AR X5: An edge-assisted multi-user collaborative framework for mobile web augmented reality in 5G and beyond[J]. IEEE Transactions on Cloud Computing, 2022, 10(4): 2521–2537. doi: 10.1109/TCC.2020.3046128.
|
| [25] |
SKLAR B. Rayleigh fading channels in mobile digital communication systems. I. Characterization[J]. IEEE Communications Magazine, 1997, 35(9): 136–146. doi: 10.1109/35.620535.
|
| [26] |
WANG Xu, WANG Sen, LIANG Xingxing, et al. Deep reinforcement learning: A survey[J]. IEEE Transactions on Neural Networks and Learning Systems, 2024, 35(4): 5064–5078. doi: 10.1109/TNNLS.2022.3207346.
|
| [27] |
ZAKHARENKOV A and MAKAROV I. Deep reinforcement learning with DQN vs. PPO in VizDoom[C]. 2021 IEEE 21st International Symposium on Computational Intelligence and Informatics, Budapest, Hungary, 2021: 131–136. doi: 10.1109/CINTI53070.2021.9668479.
|
| [28] |
DE LA FUENTE N and GUERRA D A V. A comparative study of deep reinforcement learning models: DQN vs PPO vs A2C[EB/OL]. https://doi.org/10.48550/arXiv.2407.14151, 2024.
|
| [29] |
LADOSZ P, WENG Lilian, KIM M, et al. Exploration in deep reinforcement learning: A survey[J]. Information Fusion, 2022, 85: 1–22. doi: 10.1016/j.inffus.2022.03.003.
|
| [30] |
FAN Jianqing, WANG Zhaoran, XIE Yuchen, et al. A theoretical analysis of deep Q-learning[C]. Proceedings of the 2nd Annual Conference on Learning for Dynamics and Control, Berkeley, USA, 2020: 486–489.
|