Citation: | WANG Shiyu, WANG Ximing, KE Zhenyi, LIU Dianxiong, LIU Jize, DU Zhiyong. Multi-Mode Anti-Jamming for UAV Communications: A Cooperative Mode-Based Decision-Making Approach via Two-Dimensional Transfer Reinforcement Learning[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250566 |
[1] |
ŠIMON O and GÖTTHANS T. A survey on the use of deep learning techniques for UAV jamming and deception[J]. Electronics, 2022, 11(19): 3025. doi: 10.3390/electronics11193025.
|
[2] |
XUE Haonan, ZHUO Zhihai, YAN Weihao, et al. Research on UAV jamming signal generation based on intelligent jamming[J]. IEEE Access, 2025, 13: 14686–14701. doi: 10.1109/ACCESS.2025.3530987.
|
[3] |
YU A, KOLOTYLO I, HASHIM H A, et al. Electronic warfare cyberattacks, countermeasures, and modern defensive strategies of UAV avionics: A survey[J]. IEEE Access, 2025, 13: 68660–68681. doi: 10.1109/ACCESS.2025.3561068.
|
[4] |
LIU Dianxiong, DU Zhiyong, LIU Xiaodu, et al. Task-based network reconfiguration in distributed UAV swarms: A bilateral matching approach[J]. IEEE/ACM Transactions on Networking, 2022, 30(6): 2688–2700. doi: 10.1109/TNET.2022.3181036.
|
[5] |
YAZICIGIL R T, NADEAU P, RICHMAN D, et al. Ultra-fast bit-level frequency-hopping transmitter for securing low-power wireless devices[C]. Proceedings of 2018 IEEE Radio Frequency Integrated Circuits Symposium, Philadelphia, USA, 2018: 176–179. doi: 10.1109/RFIC.2018.8428994.
|
[6] |
SHE Honghan, CHENG Yufan, ZHANG Wenzihan, et al. A synchronization acquisition algorithm based on the frequency hopping pulses combining[J]. China Communications, 2024, 21(4): 74–87. doi: 10.23919/JCC.fa.2023-0505.202404.
|
[7] |
WANG Beibei, WU Yongle, LIU K J R, et al. An anti-jamming stochastic game for cognitive radio networks[J]. IEEE Journal on Selected Areas in Communications, 2011, 29(4): 877–889. doi: 10.1109/JSAC.2011.110418.
|
[8] |
GAO Yulan, XIAO Yue, WU Mingming, et al. Game theory-based anti-jamming strategies for frequency hopping wireless communications[J]. IEEE Transactions on Wireless Communications, 2018, 17(8): 5314–5326. doi: 10.1109/TWC.2018.2841921.
|
[9] |
邓喆, 鲁信金, 雷菁. 一种非合作通信中跳频序列多站点联合预测方法[J]. 无线电通信技术, 2022, 48(5): 865–878. doi: 10.3969/j.issn.1003-3114.2022.05.013.
DENG Zhe, LU Xinjin, and LEI Jing. Research on joint prediction method of frequency hopping sequence[J]. Radio Communications Technology, 2022, 48(5): 865–878. doi: 10.3969/j.issn.1003-3114.2022.05.013.
|
[10] |
RAO Ning, XU Hua, QI Zisen, et al. Adaptive jamming decision-making against FHSS communications via inexpert demonstrations assisted meta reinforcement learning[J]. IEEE Communications Letters, 2025, 29(1): 105–109. doi: 10.1109/LCOMM.2024.3502423.
|
[11] |
康雅洁, 林艳, 张一晋. 基于贝叶斯Q学习的无人机集群抗干扰智能快跳频算法[J]. 航天控制, 2022, 40(2): 73–78. doi: 10.3969/j.issn.1006-3242.2022.02.013.
KANG Yajie, LIN Yan, and ZHANG Yijin. Intelligent fast frequency hopping algorithm for UAV swarm anti-jamming based on Bayesian Q-learning[J]. Aerospace Control, 2022, 40(2): 73–78. doi: 10.3969/j.issn.1006-3242.2022.02.013.
|
[12] |
王瑞东, 张彦龙, 魏鹏, 等. 战术跳频系统智能抗干扰决策[J]. 信号处理, 2023, 39(1): 84–95. doi: 10.16798/j.issn.1003-0530.2023.01.009.
WANG Ruidong, ZHANG Yanlong, WEI Peng, et al. Intelligent anti-jamming strategy for tactical frequency-hopping system[J]. Journal of Signal Processing, 2023, 39(1): 84–95. doi: 10.16798/j.issn.1003-0530.2023.01.009.
|
[13] |
张惠婷, 张然, 刘敏提, 等. 基于深度强化学习的无人机通信抗干扰算法[J]. 兵器装备工程学报, 2022, 43(10): 27–34. doi: 10.11809/bqzbgcxb2022.10.004.
ZHANG Huiting, ZHANG Ran, LIU Minti, et al. Anti-jamming algorithm of UAV communication based on deep reinforcement learning[J]. Journal of Ordnance Equipment Engineering, 2022, 43(10): 27–34. doi: 10.11809/bqzbgcxb2022.10.004.
|
[14] |
KE Zhenyi, WANG Ximing, DU Zhiyong, et al. Intelligent frequency reuse for dynamic spectrum anti-jamming: A hybrid-reward-based multi-agent deep reinforcement learning approach[J]. IEEE Wireless Communications Letters, 2025, 14(3): 771–775. doi: 10.1109/LWC.2024.3523221.
|
[15] |
DU Zhiyong, WANG Shiyu, WANG Ximing, et al. Formation-aware UAV network self-organization with game-theoretic distributed topology control[J]. IEEE Transactions on Cognitive Communications and Networking, 2025, doi: 10.1109/TCCN.2025.3530443. (查阅网上资料,未找到对应的卷期页码信息,请确认).
|
[16] |
LI Wen, QIN Yuan, FENG Zhibin, et al. “Advancing secretly by an unknown path”: A reinforcement learning-based hidden strategy for combating intelligent reactive jammer[J]. IEEE Wireless Communications Letters, 2022, 11(7): 1320–1324. doi: 10.1109/LWC.2022.3165633.
|
[17] |
VAN HUYNH N, NGUYEN D N, HOANG D T, et al. "Jam me if you can: '' Defeating jammer with deep dueling neural network architecture and ambient backscattering augmented communications[J]. IEEE Journal on Selected Areas in Communications, 2019, 37(11): 2603–2620. doi: 10.1109/JSAC.2019.2933889.
|
[18] |
MNIH V, KAVUKCUOGLU K, SILVER D, et al. Human-level control through deep reinforcement learning[J]. Nature, 2015, 518(7540): 529–533. doi: 10.1038/nature14236.
|
[19] |
DU Zhiyong, DENG Yansha, GUO Weisi, et al. Green deep reinforcement learning for radio resource management: Architecture, algorithm compression, and challenges[J]. IEEE Vehicular Technology Magazine, 2021, 16(1): 29–39. doi: 10.1109/MVT.2020.3015184.
|
[20] |
胡杨林, 张天魁, 李博, 等. 无人机使能的通信感知一体化组网与技术研究综述[J]. 电子与信息学报, 2025, 47(4): 859–875. doi: 10.11999/JEIT241116.
HU Yanglin, ZHANG Tiankui, LI Bo, et al. A survey on UAV-enabled integrated sensing and communication networking and technologies[J]. Journal of Electronics & Information Technology, 2025, 47(4): 859–875. doi: 10.11999/JEIT241116.
|
[21] |
CHEN Yunfei, SABNIS K T, and ABD-ALHAMEED R A. New formula for conversion efficiency of RF EH and its wireless applications[J]. IEEE Transactions on Vehicular Technology, 2016, 65(11): 9410–9414. doi: 10.1109/TVT.2016.2515843.
|
[22] |
SAMALA S, MISHRA S, and SINGH S S. Spectrum sensing techniques in cognitive radio technology: A review paper[J]. Journal of Communications, 2020, 15(7): 577–582. doi: 10.12720/jcm.15.7.577-582.
|
[23] |
HE Kaiming and SUN Jian. Convolutional neural networks at constrained time cost[C]. Proceedings of 2015 IEEE Conference on Computer Vision and Pattern Recognition, Boston, USA, 2015. doi: 10.1109/CVPR.2015.7299173.
|
[24] |
GAO Yayun, YUAN Ye, LI Huiyong, et al. Reinforcement learning-based antijamming strategy for self-defense jammer-aided radar systems[J]. IEEE Transactions on Aerospace and Electronic Systems, 2025, 61(2): 3852–3867. doi: 10.1109/TAES.2024.3492168.
|