Citation: | LEI Wentai, WANG Yiming, ZHONG Jiwei, XU Qiguo, JIANG Yuyin, LI Cheng. A Review of Clutter Suppression Techniques in Ground Penetrating Radar: Mechanisms, Methods, and Challenges[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250524 |
[1] |
JOL H M, 雷文太, 童孝忠, 周旸, 等译. 探地雷达理论与应用[M]. 北京: 电子工业出版社, 2011. (查阅网上资料, 未找到本条文献页码信息, 请补充).
JOL H M, LEI Wentai, TONG Xiaozhong, ZHOU Yang, et al. translation. Ground Penetrating Radar: Theory and Application[M]. Beijing: Publishing House of Electronics Industry, 2011.
|
[2] |
XU Qiguo, GAO Hang, PANG Zebang, et al. GPR Bscan change detection network for structural defect evolution[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 5110815. doi: 10.1109/Tgrs.2024.3480122.
|
[3] |
SHI Xinghua, ZHANG Anxue, HAN Guoqing, et al. The design of 3-D ground-penetrating radar system for bridge inspection[J]. IEEE Sensors Journal, 2024, 24(13): 21276–21285. doi: 10.1109/Jsen.2024.3396467.
|
[4] |
ZHOU Haoqiu, FENG Xuan, DONG Zejun, et al. Predictive rotation fusion: A physical model-based fusion method for full-polarimetric GPR data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2025, 63: 5103120. doi: 10.1109/Tgrs.2025.3550887.
|
[5] |
ARENDT B, SCHNEIDER M, MAYER W, et al. Environmental influences on the detection of buried objects with a ground-penetrating radar[J]. Remote Sensing, 2024, 16(6): 1011. doi: 10.3390/rs16061011.
|
[6] |
刘海, 黄肇刚, 岳云鹏, 等. 地下管线渗漏环境下探地雷达信号特征分析[J]. 电子与信息学报, 2022, 44(4): 1257–1264. doi: 10.11999/JEIT211213.
LIU Hai, HUANG Zhaogang, YUE Yunpeng, et al. Characteristics analysis of ground penetrating radar signals for groundwater pipe leakage environment[J]. Journal of Electronics & Information Technology, 2022, 44(4): 1257–1264. doi: 10.11999/JEIT211213.
|
[7] |
LIU Hai, YUE Yunpeng, LIAN Yunlong, et al. Reverse-time migration of GPR data for imaging cavities behind a reinforced shield tunnel[J]. Tunnelling and Underground Space Technology, 2024, 146: 105649. doi: 10.1016/j.tust.2024.105649.
|
[8] |
倪志康, 叶盛波, 史城, 等. 一种深度学习辅助的探地雷达定位方法[J]. 电子与信息学报, 2022, 44(4): 1265–1273. doi: 10.11999/JEIT211072.
NI Zhikang, YE Shengbo, SHI Cheng, et al. A deep learning assisted ground penetrating radar localization method[J]. Journal of Electronics & Information Technology, 2022, 44(4): 1265–1273. doi: 10.11999/JEIT211072.
|
[9] |
QIAO Hanqing, ZHANG Minghe, and BANO M. Harris hawks optimization for soil water content estimation in ground-penetrating radar waveform inversion[J]. Remote Sensing, 2025, 17(8): 1436. doi: 10.3390/rs17081436.
|
[10] |
雷文太, 隋浩, 姜和俊, 等. DABP: 一种基于深度学习的探地雷达自聚焦后向投影成像方法[J]. 电子学报, 2024, 52(12): 4023–4036. doi: 10.12263/DZXB.20231144.
LEI Wentai, SUI Hao, JIANG Hejun, et al. DABP: A deep learning based auto focusing back projection imaging method for ground penetrating radar[J]. Acta Electronica Sinica, 2024, 52(12): 4023–4036. doi: 10.12263/DZXB.20231144.
|
[11] |
WEI Chuyang, ZHOU Xiren, LIU Shikang, et al. Enhanced anomaly detection in GPR data by combining spatial and dynamic information[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 5112010. doi: 10.1109/Tgrs.2024.3504715.
|
[12] |
WARREN C, GIANNOPOULOS A, and GIANNAKIS I. gprMax: Open source software to simulate electromagnetic wave propagation for ground penetrating radar[J]. Computer Physics Communications, 2016, 209: 163–170. doi: 10.1016/j.cpc.2016.08.020.
|
[13] |
曾波, 刘硕, 杨军, 等. 地表起伏对地下管线GPR探测的影响[J]. 物探与化探, 2023, 47(4): 1064–1070. doi: 10.11720/wtyht.2023.1516.
ZENG Bo, LIU Shuo, YANG Jun, et al. Influence of surface undulations on GPR-based underground pipeline detection[J]. Geophysical and Geochemical Exploration, 2023, 47(4): 1064–1070. doi: 10.11720/wtyht.2023.1516.
|
[14] |
王磊. 探地雷达抑制射频干扰技术研究[D]. [硕士论文], 国防科学技术大学, 2009.
WANG Lei. Radio frequency interference suppressing of ground penetrating radar[D]. [Master dissertation], National University of Defense Technology, 2009.
|
[15] |
WANG Zhou, BOVIK A C, SHEIKH H R, et al. Image quality assessment: From error visibility to structural similarity[J]. IEEE Transactions on Image Processing, 2004, 13(4): 600–612. doi: 10.1109/Tip.2003.819861.
|
[16] |
WANG Z, SIMONCELLI E P, and BOVIK A C. Multiscale structural similarity for image quality assessment[C]. The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, Pacific Grove, USA, 2003. doi: 10.1109/ACSSC.2003.1292216.
|
[17] |
KIM H S, SEOL J, LEE J Y, et al. Style harmonization of panoramic radiography using deep learning[J]. Oral Radiology, 2025, 41(1): 111–119. doi: 10.1007/s11282-024-00782-2.
|
[18] |
ZHANG Lin, ZHANG Lei, MOU Xuanqin, et al. FSIM: A feature similarity index for image quality assessment[J]. IEEE Transactions on Image Processing, 2011, 20(8): 2378–2386. doi: 10.1109/Tip.2011.2109730.
|
[19] |
ZHANG Hua, DAI Qianwei, FENG Deshan, et al. ROI-binarized hyperbolic region segmentation and characterization by using deep residual convolutional neural network with skip connection for GPR imaging[J]. Applied Sciences, 2024, 14(11): 4689. doi: 10.3390/app14114689.
|
[20] |
SALIMANS T, GOODFELLOW I, ZAREMBA W, et al. Improved techniques for training GANs[C]. Proceedings of the 30th International Conference on Neural Information Processing Systems, Barcelona, Spain, 2016.
|
[21] |
HEUSEL M, RAMSAUER H, UNTERTHINER T, et al. GANs trained by a two time-scale update rule converge to a local Nash equilibrium[C]. Proceedings of the 31st International Conference on Neural Information Processing Systems, Long Beach, USA, 2017.
|
[22] |
ZOUBIR A M, CHANT I J, BROWN C L, et al. Signal processing techniques for landmine detection using impulse ground penetrating radar[J]. IEEE Sensors Journal, 2002, 2(1): 41–51. doi: 10.1109/7361.987060.
|
[23] |
RASHED M and HARBI H. Background matrix subtraction (BMS): A novel background removal algorithm for GPR data[J]. Journal of Applied Geophysics, 2014, 106: 154–163. doi: 10.1016/j.jappgeo.2014.04.022.
|
[24] |
BAI Hao and SINFIELD J V. Improved background and clutter reduction for pipe detection under pavement using ground penetrating radar (GPR)[J]. Journal of Applied Geophysics, 2020, 172: 103918. doi: 10.1016/j.jappgeo.2019.103918.
|
[25] |
WU Shuxian, WANG Longxiang, ZENG Xiaozhen, et al. UAV-mounted GPR for object detection based on cross-correlation background subtraction method[J]. Remote Sensing, 2022, 14(20): 5132. doi: 10.3390/rs14205132.
|
[26] |
HAYASHI N and SATO M. F–k filter designs to suppress direct waves for bistatic ground penetrating radar[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(3): 1433–1444. doi: 10.1109/TGRS.2009.2032536.
|
[27] |
KANG M S and AN Y K. Frequency-wavenumber analysis of deep learning-based super resolution 3D GPR images[J]. Remote Sensing, 2020, 12(18): 3056. doi: 10.3390/rs12183056.
|
[28] |
卢丹平, 沈绍祥, 李玉喜, 等. 一种基于改进f-k滤波的编码雷达信号去噪方法[J]. 电波科学学报, 2023, 38(5): 861–869. doi: 10.12265/j.cjors.2022183.
LU Danping, SHEN Shaoxiang, LI Yuxi, et al. A denoising method for coded radar signals based on improved f-k filtering[J]. Chinese Journal of Radio Science, 2023, 38(5): 861–869. doi: 10.12265/j.cjors.2022183.
|
[29] |
KONG Qingyang, YE Shengbo, LIANG Xiao, et al. A clutter removal method based on the F-K domain for ground-penetrating radar in complex scenarios[J]. Remote Sensing, 2024, 16(6): 935. doi: 10.3390/rs16060935.
|
[30] |
GE Junkai, SUN Huaifeng, LIU Rui, et al. Removing rebar clutter through iterative F-k migration in GPR data[J]. IEEE Geoscience and Remote Sensing Letters, 2025, 22: 3500805. doi: 10.1109/Lgrs.2024.3515956.
|
[31] |
SHI Xianxin and YANG Qiufen. Suppressing the direct wave noise in GPR data via the 2-D physical wavelet frame[C]. 2011 International Conference on Transportation, Mechanical, and Electrical Engineering (TMEE), Changchun, China, 2011: 1161–1164. doi: 10.1109/TMEE.2011.6199411.
|
[32] |
WANG Xiannan and LIU Sixin. Noise suppressing and direct wave arrivals removal in GPR data based on Shearlet transform[J]. Signal Processing, 2017, 132: 227–242. doi: 10.1016/j.sigpro.2016.05.007.
|
[33] |
HE Xingkun, LI Yujin, WANG Can, et al. Separate removal of random noise and clutter in GPR images based on Self2Self and NSST[J]. International Journal of Remote Sensing, 2022, 43(9): 3490–3508. doi: 10.1080/01431161.2022.2096420.
|
[34] |
TANG Xiaosong, YANG Feng, QIAO Xu, et al. A ground-penetrating radar clutter suppression algorithm integrating signal processing and image fusion[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 5936618. doi: 10.1109/Tgrs.2024.3508813.
|
[35] |
CHEN Gaoxiang, FU Liyun, CHEN Kanfu, et al. Adaptive ground clutter reduction in ground-penetrating radar data based on principal component analysis[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(6): 3271–3282. doi: 10.1109/tgrs.2018.2882912.
|
[36] |
雷文太, 梁琼, 谭倩颖. 基于自动反相校正和峰度值比较的探地雷达回波信号去噪方法[J]. 雷达学报, 2018, 7(3): 294–302. doi: 10.12000/JR17113.
LEI Wentai, LIANG Qiong, and TAN Qianying. A new ground penetrating radar signal denoising algorithm based on automatic reversed-phase correction and kurtosis value comparison[J]. Journal of Radars, 2018, 7(3): 294–302. doi: 10.12000/JR17113.
|
[37] |
CANDÈS E J, LI X D, MA Y, et al. Robust principal component analysis?[J]. Journal of the ACM, 2011, 58(3): 11. doi: 10.1145/1970392.1970395.
|
[38] |
SONG Xiaoji, XIANG Deliang, ZHOU Kai, et al. Improving RPCA-based clutter suppression in GPR detection of antipersonnel mines[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(8): 1338–1342. doi: 10.1109/lgrs.2017.2711251.
|
[39] |
SONG Xiaoji, XIANG Deliang, ZHOU Kai, et al. Fast prescreening for GPR antipersonnel mine detection via go decomposition[J]. IEEE Geoscience and Remote Sensing Letters, 2019, 16(1): 15–19. doi: 10.1109/lgrs.2018.2866331.
|
[40] |
KUMLU D and ERER I. Improved clutter removal in GPR by robust nonnegative matrix factorization[J]. IEEE Geoscience and Remote Sensing Letters, 2020, 17(6): 958–962. doi: 10.1109/lgrs.2019.2937749.
|
[41] |
LIU Li, WU Zezhou, XU Hang, et al. GPR clutter removal based on factor group-sparse regularization[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 3509305. doi: 10.1109/Lgrs.2021.3122262.
|
[42] |
LIU Li, SONG Chenyan, WU Zezhou, et al. GPR clutter removal based on weighted nuclear norm minimization for nonparallel cases[J]. Sensors, 2023, 23(11): 5078. doi: 10.3390/s23115078.
|
[43] |
ZHAO Yi, YANG Xiaopeng, QU Xiaodong, et al. Clutter removal method for GPR based on low-rank and sparse decomposition with total variation regularization[J]. IEEE Geoscience and Remote Sensing Letters, 2023, 20: 3502605. doi: 10.1109/lgrs.2023.3250717.
|
[44] |
TEMLIOGLU E and ERER I. Clutter removal in ground-penetrating radar images using morphological component analysis[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(12): 1802–1806. doi: 10.1109/Lgrs.2016.2612582.
|
[45] |
ZHOU Yanhui and CHEN Wenchao. MCA-based clutter reduction from migrated GPR data of shallowly buried point target[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(1): 432–448. doi: 10.1109/Tgrs.2018.2855728.
|
[46] |
NI Zhikang, PAN Jun, SHI Cheng, et al. DL-based clutter removal in migrated GPR data for detection of buried target[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 3507205. doi: 10.1109/Lgrs.2021.3089246.
|
[47] |
FENG Deshan, LIU Shuo, YANG Jun, et al. The noise attenuation and stochastic clutter removal of ground penetrating radar based on the K-SVD dictionary learning[J]. IEEE Access, 2021, 9: 74879–74890. doi: 10.1109/Access.2021.3081349.
|
[48] |
FENG Deshan, HE Li, WANG Xun, et al. Efficient denoising of multidimensional GPR data based on fast dictionary learning[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2024, 17: 5221–5233. doi: 10.1109/Jstars.2024.3366397.
|
[49] |
LUO Jiabin, LEI Wentai, HOU Feifei, et al. GPR B-scan image denoising via multi-scale convolutional autoencoder with data augmentation[J]. Electronics, 2021, 10(11): 1269. doi: 10.3390/electronics10111269.
|
[50] |
NI Zhikang, YE Shengbo, SHI Cheng, et al. Clutter suppression in GPR B-scan images using robust autoencoder[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 3500705. doi: 10.1109/Lgrs.2020.3026007.
|
[51] |
ZHANG Yan, DIAO Enmao, HUSTON D, et al. A data-efficient deep learning method for rough surface clutter reduction in GPR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 5104610. doi: 10.1109/tgrs.2024.3382545.
|
[52] |
TEMLIOGLU E and ERER I. A novel convolutional autoencoder-based clutter removal method for buried threat detection in ground-penetrating radar[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5103313. doi: 10.1109/tgrs.2021.3098122.
|
[53] |
SUN Haihan, CHENG Weixia, and FAN Zheng. Learning to remove clutter in real-world GPR images using hybrid data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5113714. doi: 10.1109/Tgrs.2022.3176029.
|
[54] |
YANG Gexing, YUAN Da, XU Tianjia, et al. An adaptive clutter-immune method for pipeline detection with GPR[J]. IEEE Sensors Journal, 2023, 23(19): 22984–22997. doi: 10.1109/Jsen.2023.3305681.
|
[55] |
CAO Yanjie, YANG Xiaopeng, GUO Conglong, et al. Subspace projection attention network for GPR heterogeneous clutter removal[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2024, 17: 3917–3926. doi: 10.1109/jstars.2024.3355213.
|
[56] |
LEI Wentai, TAN Xin, LUO Chaopeng, et al. Mutual interference suppression and signal enhancement method for ground-penetrating radar based on deep learning[J]. Electronics, 2024, 13(23): 4722. doi: 10.3390/electronics13234722.
|
[57] |
PANDA S L, SAHOO U K, MAITI S, et al. An attention U-Net-based improved clutter suppression in GPR images[J]. IEEE Transactions on Instrumentation and Measurement, 2024, 73: 8502511. doi: 10.1109/tim.2024.3378267.
|
[58] |
兰天, 盛世文, 孙熙韬, 等. 探地雷达多阶段级联U-Net墙内小目标三维重建方法[J]. 雷达学报(中英文), 2024, 13(6): 1184–1201. doi: 10.12000/JR24163.
LAN Tian, SHENG Shiwen, SUN Xitao, et al. Three-dimensional reconstruction method for detecting small targets within walls based on a multistage cascade U-Net approach using ground penetrating radars[J]. Journal of Radars, 2024, 13(6): 1184–1201. doi: 10.12000/JR24163.
|
[59] |
NI Zhikang, SHI Cheng, PAN Jun, et al. Declutter-GAN: GPR B-scan data clutter removal using conditional generative adversarial nets[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 4023105. doi: 10.1109/lgrs.2022.3159788.
|
[60] |
雷文太, 毛凌青, 庞泽邦, 等. DR-GAN: 一种无监督学习的探地雷达杂波抑制方法[J]. 电子与信息学报, 2023, 45(10): 3776–3785. doi: 10.11999/JEIT221072.
LEI Wentai, MAO Lingqing, PANG Zebang, et al. DR-GAN: An unsupervised learning approach to clutter suppression for ground penetrating radar[J]. Journal of Electronics & Information Technology, 2023, 45(10): 3776–3785. doi: 10.11999/JEIT221072.
|
[61] |
GE Junkai, SUN Huaifeng, SHAO Wei, et al. Wavelet-GAN: A GPR noise and clutter removal method based on small real datasets[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 5918214. doi: 10.1109/Tgrs.2024.3410277.
|
[62] |
WANG Yuanzheng, QIN Hui, TANG Yu, et al. RCE-GAN: A rebar clutter elimination network to improve tunnel lining void detection from GPR images[J]. Remote Sensing, 2022, 14(2): 251. doi: 10.3390/rs14020251.
|
[63] |
MA Yalou, LEI Wentai, PANG Zebang, et al. Rebar clutter suppression and road defects localization in GPR B-scan images based on SuppRebar-GAN and EC-Yolov7 networks[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 1–14. doi: 10.1109/tgrs.2024.3373025.
|
[64] |
REN Qiuyang, WANG Yanhui, XU Jie, et al. REN-GAN: Generative adversarial network-driven rebar clutter elimination network in GPR image for tunnel defect identification[J]. Expert Systems with Applications, 2024, 255: 124395. doi: 10.1016/j.eswa.2024.124395.
|
[65] |
XIONG Hongqiang, LI Jing, LIU Tieyu, et al. Catenary clutter elimination network for railway tunnel ground penetrating radar data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2025, 63: 5905614. doi: 10.1109/Tgrs.2025.3533609.
|
[66] |
GUO Zhishun, GAO Yesheng, SHI Mengyang, et al. Unsupervised multiattention domain adaptive decluttering model for metal pipe targets in GPR images[J]. IEEE Sensors Journal, 2025, 25(10): 17503–17513. doi: 10.1109/Jsen.2025.3553381.
|
[67] |
LI Boyang, YUAN Da, YANG Gexing, et al. Flexibility-residual BiSeNetV2 for GPR image decluttering[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 5106812. doi: 10.1109/Tgrs.2023.3296722.
|
[68] |
LEI Jianwei, FANG Hongyuan, ZHU Yining, et al. GPR detection localization of underground structures based on deep learning and reverse time migration[J]. Ndt & E International, 2024, 143: 103043. doi: 10.1016/j.ndteint.2024.103043.
|
[69] |
戴前伟, 熊泽平, 丁浩, 等. 基于VAE-RefineNet算法流程的GPR杂波抑制和目标成像[J]. 地球物理学进展, 2023, 38(5): 2250–2262. doi: 10.6038/pg2023GG0645.
DAI Qianwei, XIONG Zeping, DING Hao, et al. Clutter suppression of GPR B-scan and target imaging based on VAE-RefineNet algorithm process[J]. Progress in Geophysics, 2023, 38(5): 2250–2262. doi: 10.6038/pg2023GG0645.
|
[70] |
WANG Xiangyu and LIU Hai. VAE-ResNet cascade network: An advanced algorithm for stochastic clutter suppression in ground penetrating radar data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 5913212. doi: 10.1109/Tgrs.2024.3394750.
|
[71] |
LAN Tian, LUO Xi, YANG Xiaopeng, et al. A constrained diffusion model for deep GPR image enhancement[J]. IEEE Geoscience and Remote Sensing Letters, 2024, 21: 3003505. doi: 10.1109/Lgrs.2024.3433481.
|
[72] |
KAYACAN Y E and ERER I. A vision-transformer-based approach to clutter removal in GPR: DC-ViT[J]. IEEE Geoscience and Remote Sensing Letters, 2024, 21: 3505105. doi: 10.1109/Lgrs.2024.3385694.
|
[73] |
WANG Xiangyu, LIU Hai, MENG Xu, et al. Enhanced imaging of concealed defects behind concrete linings using residual channel attention network for rebar clutter suppression[J]. Automation in Construction, 2024, 166: 105574. doi: 10.1016/j.autcon.2024.105574.
|