Advanced Search
Turn off MathJax
Article Contents
AN Chenxiang, HUO Shaofei, SHI Yanchao, ZHAI Yonggui, XIAO Renzhen, CHEN Changhua, CHEN Kun, HUANG Huijie, SHEN Liuyang, LUO Kaiwen, WANG HongGuang, LI YuQing. Research on Generation and Optimization of Dual-channel High-current Relativistic Electron Beams Based on a Single Magnet[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250487
Citation: AN Chenxiang, HUO Shaofei, SHI Yanchao, ZHAI Yonggui, XIAO Renzhen, CHEN Changhua, CHEN Kun, HUANG Huijie, SHEN Liuyang, LUO Kaiwen, WANG HongGuang, LI YuQing. Research on Generation and Optimization of Dual-channel High-current Relativistic Electron Beams Based on a Single Magnet[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250487

Research on Generation and Optimization of Dual-channel High-current Relativistic Electron Beams Based on a Single Magnet

doi: 10.11999/JEIT250487 cstr: 32379.14.JEIT250487
Funds:  The National Natural Science Foundation of China (12175182)
  • Received Date: 2025-06-03
  • Accepted Date: 2026-01-12
  • Rev Recd Date: 2026-01-08
  • Available Online: 2026-01-27
  •   Objective  High-Power Microwave (HPM) technology is a strategic frontier in defense, military, and civilian systems. The microwave output power of a single HPM source reaches a bottleneck because of physical limits, material constraints, and fabrication challenges. To address this issue, researchers have proposed HPM power synthesis, which increases peak power by integrating multiple HPM sources.  Methods  This study addresses the time synchronization problem in multipath HPM synthesis by designing a dual-channel high-current relativistic electron-beam generator. The device uses one pulse-power driver to drive two diodes simultaneously and applies one coil magnet to confine both electron beams. Three-dimensional particle-in-cell simulations revealed the angular nonuniformity of the beam current, and a cathode stalk modification is proposed to improve beam quality, whose effectiveness is subsequently validated by experiments.   Results and Discussions  Three-dimensional UNIPIC particle-in-cell simulations of the device’s physical processes revealed that: due to side emission from the cathode stalk, the dual electron beams exhibit significant angular nonuniformity. Specifically, the beam current density near the center of the magnetic field is relatively low, while it is higher in regions farther from the magnetic center. To address this issue, the structure of the cathode stalk was modified to suppress side emission. The angular current fluctuation of cathode emission in Tube 1 decreased dramatically from 35.61% to 2.93%, and that in Tube 2 decreased from 33.17% to 3.13%, improving beam quality. Simulations and experiments show that the device stably generates high-quality electron beams with a voltage of 800 kV and a current of 20 kA, reaching a total power of 16 GW. The current waveform remains stable within the 45 ns voltage half-width without impedance collapse.  Conclusions  The study provides a reliable basis for generating multipath high-current relativistic electron beams and for synthesizing the power of multiple HPM sources, demonstrating strong application potential.
  • loading
  • [1]
    ROSTOV V V, GUNIN A V, TSYGANKOV R V, et al. Two-wave Cherenkov oscillator with moderately oversized slow-wave structure[J]. IEEE Transactions on Plasma Science, 2018, 46(1): 33–42. doi: 10.1109/TPS.2017.2773661.
    [2]
    王冬, 秦奋, 陈代兵, 等. L波段双阶梯阴极磁绝缘线振荡器的粒子模拟与实验研究[J]. 强激光与粒子束, 2010, 22(4): 857–860. doi: 10.3788/HPLPB20102204.0857.

    WANG Dong, QIN Fen, CHEN Daibing, et al. Particle simulation and experimental research on L-band double ladder cathode MILO[J]. High Power Laser and Particle Beams, 2010, 22(4): 857–860. doi: 10.3788/HPLPB20102204.0857.
    [3]
    HAWORTH M, HENDRICK K, ENGLERT T, et al. Recent results in the hard-tube MILO experiment[C]. IEEE Conference Record - Abstracts. 1997 IEEE International Conference on Plasma Science, San Diego, USA, 1997: 190. doi: 10.1109/PLASMA.1997.604783.
    [4]
    ZHANG Jiande, GE Xingjun, ZHANG Jun, et al. Research progresses on Cherenkov and transit-time high-power microwave sources at NUDT[J]. Matter and Radiation at Extremes, 2016, 1(3): 163–178. doi: 10.1016/j.mre.2016.04.001.
    [5]
    肖仁珍. 相对论返波管研究进展[J]. 现代应用物理, 2022, 13(2): 020101. doi: 10.12061/j.issn.2095-6223.2022.020101.

    XIAO Renzhen. Research progress of relativistic backward wave oscillator[J]. Modern Applied Physics, 2022, 13(2): 020101. doi: 10.12061/j.issn.2095-6223.2022.020101.
    [6]
    XIAO Renzhen, CHEN Kun, WANG Jiaoyin, et al. Generation of superradiance pulses exceeding 100 GW based on an oversized coaxial Cherenkov generator with profiled slow wave structure and coaxial coupler[J]. IEEE Electron Device Letters, 2024, 45(7): 1321–1324. doi: 10.1109/LED.2024.3401032.
    [7]
    XIAO Renzhen, CHENG Renjie, CHEN Kun, et al. A cross-band high-power microwave generator with wide frequency tunability based on a relativistic magnetron and a radial transit-time oscillator[J]. IEEE Transactions on Electron Devices, 2024, 71(1): 840–845. doi: 10.1109/TED.2023.3336636.
    [8]
    MIAO Tianze, XIAO Renzhen, SHI Yanchao, et al. Process and suppression method of backward current in a diode packaged with permanent magnet[J]. IEEE Transactions on Electron Devices, 2024, 71(8): 4985–4990. doi: 10.1109/TED.2024.3409675.
    [9]
    CHEN Kun, XIAO Renzhen, ZHAI Yonggui, et al. Asymmetric mode competition in an X-band dual-mode relativistic backward wave oscillator[J]. IEEE Transactions on Electron Devices, 2024, 71(7): 4300–4305. doi: 10.1109/TED.2024.3397633.
    [10]
    XIAO Renzhen, ZHANG X W, ZHANG L J, et al. Efficient generation of multi-gigawatt power by a klystron-like relativistic backward wave oscillator[J]. Laser and Particle Beams, 2010, 28(3): 505–511. doi: 10.1017/S0263034610000509.
    [11]
    XIAO Renzhen, CHEN Changhua, SUN Jun, et al. A high-power high-efficiency klystronlike relativistic backward wave oscillator with a dual-cavity extractor[J]. Applied Physics Letters, 2011, 98(10): 101502. doi: 10.1063/1.3562612.
    [12]
    XIAO Renzhen, SHI Yanchao, WANG Huida, et al. Efficient generation of multi-gigawatt power by an X-band dual-mode relativistic backward wave oscillator operating at low magnetic field[J]. Physics of Plasmas, 2020, 27(4): 043102. doi: 10.1063/5.0002361.
    [13]
    XIAO Renzhen, DENG Yuqun, WANG Yue, et al. Power combiner with high power capacity and high combination efficiency for two phase-locked relativistic backward wave oscillators[J]. Applied Physics Letters, 2015, 107(13): 133502. doi: 10.1063/1.4932065.
    [14]
    LI Xiaoze, SONG Wei, TAN Weibing, et al. Experimental study of a Ku-band RBWO packaged with permanent magnet[J]. IEEE Transactions on Electron Devices, 2019, 66(10): 4408–4412. doi: 10.1109/TED.2019.2936835.
    [15]
    YANG Dewen, CHEN Changhua, TENG Yan, et al. Efficiency improvement of a klystron-like relativistic traveling wave oscillator with a ridge extractor and permanent magnet over the dual cavity extractor[J]. IEEE Electron Device Letters, 2024, 45(4): 696–699. doi: 10.1109/LED.2024.3368284.
    [16]
    BENFORD J, SWEGLE J A, and SCHAMILOGLU E, 江伟华, 张驰, 译. 高功率微波[M]. 2版. 北京: 国防工业出版社, 2009.

    BENFORD J, SWEGLE J A, and SCHAMILOGLU E, JIANG Weihua, ZHANG Chi, translation. High Power Microwaves[M]. 2nd ed. Beijing: National Defense Industry Press, 2009.
    [17]
    LEVINE J S, BENFORD J N, COURTNEY R, et al. Operational characteristics of a phase-locked module of relativistic magnetrons[C]. SPIE 1407, Intense Microwave and Particle Beams II, Los Angeles, USA, 1991: 74–82. doi: 10.1117/12.43482.
    [18]
    SZE H, SMITH R R, BENFORD J N, et al. Phase-locking of strongly coupled relativistic magnetrons[J]. IEEE Transactions on Electromagnetic Compatibility, 1992, 34(3): 235–241. doi: 10.1109/15.155835.
    [19]
    BENFORD J, SZE H, WOO W, et al. Phase locking of relativistic magnetrons[J]. Physical Review Letters, 1989, 62(8): 969–971. doi: 10.1103/PhysRevLett.62.969.
    [20]
    WOO W, BENFORD J, FITTINGHOFF D, et al. Phase locking of high-power microwave oscillators[J]. Journal of Applied Physics, 1989, 65(2): 861–866. doi: 10.1063/1.343079.
    [21]
    闫孝鲁, 张晓萍, 李阳梅. X波段新型低阻抗高功率微波源的模拟研究[J]. 物理学报, 2016, 65(13): 138402. doi: 10.7498/aps.65.138402.

    YAN Xiaolu, ZHANG Xiaoping, and LI Yangmei. Particle-in-cell simulation of a new X-band low-impedance high power microwave source[J]. Acta Physica Sinica, 2016, 65(13): 138402. doi: 10.7498/aps.65.138402.
    [22]
    黎深根, 储开荣, 李冬凤, 等. 应用于高功率微波的速调管和正交场器件[J]. 现代应用物理, 2023, 14(3): 030503. doi: 10.12061/j.issn.2095-6223.2023.030503.

    LI Shengen, CHU Kairong, LI Dongfeng, et al. Klystron and crossed-field device for high power microwave applications[J]. Modern Applied Physics, 2023, 14(3): 030503. doi: 10.12061/j.issn.2095-6223.2023.030503.
    [23]
    JU Jinchuan, GE Xingjun, ZHANG Wei, et al. Coherent combining of phase-steerable high power microwaves generated by two X-band triaxial klystron amplifiers with pulsed magnetic fields[J]. Physical Review Letters, 2023, 130(8): 085002. doi: 10.1103/PhysRevLett.130.085002.
    [24]
    ZHOU Fugui, ZHANG Dian, ZHANG Jun, et al. Design of a cross-band frequency hopping high power microwave oscillator with permanent magnet package[J]. Physics of Plasmas, 2023, 30(10): 103504. doi: 10.1063/5.0167193.
    [25]
    LIU Zhenbang, SONG Falun, JIN Hui, et al. Coherent combination of power in space with Two X-band gigawatt coaxial multi-beam relativistic klystron amplifiers[J]. IEEE Electron Device Letters, 2022, 43(2): 284–287. doi: 10.1109/LED.2021.3137927.
    [26]
    李永东, 王洪广, 刘纯亮, 等. 高功率微波器件2.5维通用粒子模拟软件——尤普[J]. 强激光与粒子束, 2009, 21(12): 1866–1870.

    LI Yongdong, WANG Hongguang, LIU Chunliang, et al. 2.5-dimensional electromagnetic particle-in-cell code-UNIPIC for high power microwave simulations[J]. High Power Laser and Particle Beams, 2009, 21(12): 1866–1870.
    [27]
    LI Yongdong, HE Feng, and LIU Chunliang. A volume-weighting cloud-in-cell model for particle simulation of axially symmetric plasmas[J]. Plasma Science and Technology, 2005, 7(1): 2653–2656. doi: 10.1088/1009-0630/7/1/012.
    [28]
    YANG Wenjin, LI Yongdong, WANG Hongguang, et al. Multi-objective optimization of high-power microwave sources based on multi-criteria decision-making and multi-objective micro-genetic algorithm[J]. IEEE Transactions on Electron Devices, 2023, 70(7): 3892–3898. doi: 10.1109/TED.2023.3280151.
    [29]
    WANG Jianguo, ZHANG Dianhui, LIU Chunliang, et al. UNIPIC code for simulations of high power microwave devices[J]. Physics of Plasmas, 2009, 16(3): 033108. doi: 10.1063/1.3091931.
    [30]
    吴小玲. 同轴周期永磁聚焦相对论切伦柯夫发生器研究[D]. [博士论文], 清华大学, 2021. doi: 10.27266/d.cnki.gqhau.2021.000148.

    WU Xiaoling. Research on relativistic Cerenkov generator focused by coaxial periodic permanent magnet[D]. [Ph. D. dissertation], Tsinghua University, 2021. doi: 10.27266/d.cnki.gqhau.2021.000148.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(15)

    Article Metrics

    Article views (88) PDF downloads(8) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return