Advanced Search
Turn off MathJax
Article Contents
JIANG He, SUN Mang, ZHENG Zhou, WU Peilin, CHENG Deqiang, ZHOU Chen. Kepler’s Laws Inspired Single Image Detail Enhancement Algorithm[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250455
Citation: JIANG He, SUN Mang, ZHENG Zhou, WU Peilin, CHENG Deqiang, ZHOU Chen. Kepler’s Laws Inspired Single Image Detail Enhancement Algorithm[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250455

Kepler’s Laws Inspired Single Image Detail Enhancement Algorithm

doi: 10.11999/JEIT250455 cstr: 32379.14.JEIT250455
Funds:  The National Natural Science Foundation of China (52304182, 52204177), The National Key Research and Development Program of China (2023YFC2907600, 2021YFC2902701, 2021YFC2902702)
  • Received Date: 2025-05-26
  • Accepted Date: 2025-11-03
  • Rev Recd Date: 2025-11-03
  • Available Online: 2025-11-12
  •   Objective  Single-image detail enhancement based on residual learning has received extensive attention in recent years. In these methods, the residual layer is updated by using the similarity between the residual layer and the detail layer, and it is then combined linearly with the original image to enhance image detail. This update process is a greedy algorithm, which tends to trap the system in local optima and limits overall performance. Inspired by Kepler’s laws, the residual update is treated as the dynamic adjustment of planetary positions. By applying Kepler’s laws and computing the global optimal position of the planets, precise updates of the residual layer are achieved.  Methods  The input image is partitioned into multiple blocks. For each block, its candidate blocks are treated as “planets”, and the best matching block is treated as a “star”. The positions of the “planets” and the “star” are updated by computing the differences between each “planet” and the original image block until the positions converge, which determines the location of the global optimal matching block.  Results and Discussions  In this study, 16 algorithms are tested on three datasets at two magnification levels (Table 1). The test results show that the proposed algorithm achieves strong performance in both PSNR and SSIM evaluations. During detail enhancement, compared with other algorithms, the proposed algorithm shows stronger edge preservation capability (Fig. 7). However, it is not robust to noise (Fig. 8Fig. 10), and the performance of the enhanced images continues to decline as noise intensity increases (Fig.11). Both the initial gravitational constant and the gravitational attenuation rate constant present a fluctuating trend, meaning they increase first and then decrease (Fig. 12). When the gradient loss and texture loss weights are set to 0.001, the KLDE system achieves its best performance (Fig. 13).  Conclusions  This study proposes a single-image detail enhancement algorithm inspired by Kepler’s laws. By treating the residual update process as the dynamic adjustment of planetary positions, the algorithm applies Kepler’s laws to optimize residual layer updates, reduces the tendency of greedy search to reach local optima, and achieves more precise image detail enhancement. Experimental results show that the algorithm performs better than existing methods in visual effects and quantitative metrics and produces natural enhancement results. The running time remains relatively long because the iterative update of candidate blocks and the calculation of parameters such as gravity form the main computational bottleneck. Future work will focus on optimizing the algorithm structure to reduce unnecessary searches and improve system efficiency. The algorithm does not require training and achieves strong performance, which indicates potential value in high-precision offline image enhancement scenarios.
  • loading
  • [1]
    徐少平, 熊明海, 周常飞. 利用近清图像空间搜索的深度图像先验降噪模型[J]. 电子与信息学报, 2024, 46(11): 4229–4235. doi: 10.11999/JEIT240114.

    XU Shaoping, XIONG Minghai, and ZHOU Changfei. Deep image prior denoising model using relatively clean image space search[J]. Journal of Electronics & Information Technology, 2024, 46(11): 4229–4235. doi: 10.11999/JEIT240114.
    [2]
    程德强, 袁航, 钱建生, 等. 基于深层特征差异性网络的图像超分辨率算法[J]. 电子与信息学报, 2024, 46(3): 1033–1042. doi: 10.11999/JEIT230179.

    CHENG Deqiang, YUAN Hang, QIAN Jiansheng, et al. Image super-resolution algorithms based on deep feature differentiation network[J]. Journal of Electronics & Information Technology, 2024, 46(3): 1033–1042. doi: 10.11999/JEIT230179.
    [3]
    LI Feng, BAI Huihui, and ZHAO Yao. Detail-preserving image super-resolution via recursively dilated residual network[J]. Neurocomputing, 2019, 358: 285–293. doi: 10.1016/j.neucom.2019.05.042.
    [4]
    ZHAO Mo, CAO Gang, HUANG Xianglin, et al. Hybrid transformer-CNN for real image denoising[J]. IEEE Signal Processing Letters, 2022, 29: 1252–1256. doi: 10.1109/LSP.2022.3176486.
    [5]
    CAO Gang, TIAN Huawei, YU Lifang, et al. Acceleration of histogram-based contrast enhancement via selective downsampling[J]. IET Image Processing, 2018, 12(3): 447–452. doi: 10.1049/iet-ipr.2017.0789.
    [6]
    NARENDRA P M. A separable median filter for image noise smoothing[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1981, PAMI-3(1): 20–29. doi: 10.1109/tpami.1981.4767047.
    [7]
    TOMASI C and MANDUCHI R. Bilateral filtering for gray and color images[C]. Sixth International Conference on Computer Vision (IEEE Cat. No. 98CH36271), Bombay, India, 1998: 839–846. doi: 10.1109/iccv.1998.710815.
    [8]
    HE Kaiming, SUN Jian, and TANG Xiaoou. Guided image filtering[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(6): 1397–1409. doi: 10.1109/TPAMI.2012.213.
    [9]
    LI Zhengguo, ZHENG Jinghong, ZHU Zijian, et al. Weighted guided image filtering[J]. IEEE Transactions on Image Processing, 2015, 24(1): 120–129. doi: 10.1109/TIP.2014.2371234.
    [10]
    KOU Fei, CHEN Weihai, WEN Changyun, et al. Gradient domain guided image filtering[J]. IEEE Transactions on Image Processing, 2015, 24(11): 4528–4539. doi: 10.1109/TIP.2015.2468183.
    [11]
    CHENG Jun, LI Zhengguo, GU Zaiwang, et al. Structure-preserving guided retinal image filtering and its application for optic disk analysis[J]. IEEE Transactions on Medical Imaging, 2018, 37(11): 2536–2546. doi: 10.1109/TMI.2018.2838550.
    [12]
    SUN Zhonggui, HAN Bo, LI Jie, et al. Weighted guided image filtering with steering kernel[J]. IEEE Transactions on Image Processing, 2020, 29: 500–508. doi: 10.1109/TIP.2019.2928631.
    [13]
    TAN Ailing, LIAO Hongping, ZHANG Bozhi, et al. Infrared image enhancement algorithm based on detail enhancement guided image filtering[J]. The Visual Computer, 2023, 39(12): 6491–6502. doi: 10.1007/s00371-022-02741-6.
    [14]
    LI Jun, HAN Yuxuan, GAO Yin, et al. An enhance relative total variation with BF model for edge-preserving image smoothing[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2023, 33(10): 5420–5432. doi: 10.1109/TCSVT.2023.3255208.
    [15]
    RUDIN L I, OSHER S, and FATEMI E. Nonlinear total variation based noise removal algorithms[J]. Physica D: Nonlinear Phenomena, 1992, 60(1/4): 259–268. doi: 10.1016/0167-2789(92)90242-F.
    [16]
    XU Li, YAN Qiong, XIA Yang, et al. Structure extraction from texture via relative total variation[J]. ACM Transactions on Graphics (TOG), 2012, 31(6): 139. doi: 10.1145/2366145.2366158.
    [17]
    LIU Wei, ZHANG Pingping, HUANG Xiaolin, et al. Real-time image smoothing via iterative least squares[J]. ACM Transactions on Graphics (TOG), 2020, 39(3): 28. doi: 10.1145/3388887.
    [18]
    LIU Wei, ZHANG Pingping, QIN Hongxing, et al. Fast global image smoothing via quasi weighted least squares[J]. International Journal of Computer Vision, 2024, 132(12): 6039–6068. doi: 10.1007/s11263-024-02105-8.
    [19]
    HE Lei, XIE Yongfang, XIE Shiwen, et al. Iterative self-guided image filtering[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2024, 34(8): 7537–7549. doi: 10.1109/TCSVT.2024.3374758.
    [20]
    LI Siyuan, LIU Yuan, ZENG Jiafu, et al. Image smoothing method based on global gradient sparsity and local relative gradient constraint optimization[J]. Scientific Reports, 2024, 14(1): 15152. doi: 10.1038/s41598-024-65886-5.
    [21]
    SASAKI T, BANDOH Y, and KITAHARA M. Sparse regularization based on reverse ordered weighted L1-norm and its application to edge-preserving smoothing[C]. ICASSP 2024 - 2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Seoul, Korea, 2024: 9531–9535. doi: 10.1109/ICASSP48485.2024.10448119.
    [22]
    QI Huiqing, LI Fang, CHEN Peng, et al. Edge-preserving image restoration based on a weighted anisotropic diffusion model[J]. Pattern Recognition Letters, 2024, 184: 80–88. doi: 10.1016/j.patrec.2024.06.007.
    [23]
    XU Li, REN J S J, YAN Qiong, et al. Deep edge-aware filters[C]. The 32nd International Conference on International Conference on Machine Learning - Volume 37, Lille, France, 2015: 1669–1678.
    [24]
    LIU Sifei, PAN Jinshan, and YANG M H. Learning recursive filters for low-level vision via a hybrid neural network[C]. 14th European Conference on Computer Vision – ECCV 2016, Amsterdam, The Netherlands, 2016: 560–576. doi: 10.1007/978-3-319-46493-0_34.
    [25]
    FAN Qingnan, YANG Jiaolong, HUA Gang, et al. A generic deep architecture for single image reflection removal and image smoothing[C]. 2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 2017: 3258–3267. doi: 10.1109/iccv.2017.351.
    [26]
    YANG Yang, TANG Ling, YAN Tao, et al. Parameterized L0 image smoothing with unsupervised learning[J]. IEEE Transactions on Emerging Topics in Computational Intelligence, 2024, 8(2): 1938–1951. doi: 10.1109/TETCI.2024.3359060.
    [27]
    ZHANG Feng, TIAN Ming, LI Zhiqiang, et al. Lookup table meets local laplacian filter: Pyramid reconstruction network for tone mapping[C]. Proceedings of the 37th International Conference on Neural Information Processing Systems, New Orleans, USA, 2023: 2510.
    [28]
    QI Huiqing, TAN Shengli, and LUO Xiaoliu. Self-supervised dual generative networks for edge-preserving image smoothing[C]. ICASSP 2024 - 2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Seoul, Korea, 2024: 7215–7219. doi: 10.1109/ICASSP48485.2024.10448288.
    [29]
    KIM D, PARK J, JUNG J, et al. Lens distortion correction and enhancement based on local self-similarity for high-quality consumer imaging systems[J]. IEEE Transactions on Consumer Electronics, 2014, 60(1): 18–22. doi: 10.1109/tce.2014.6780920.
    [30]
    TAO Xin, ZHOU Chao, SHEN Xiaoyong, et al. Zero-order reverse filtering[C]. 2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 2017: 222–230. doi: 10.1109/iccv.2017.33.
    [31]
    JIANG He, ASAD M, HUANG Xiaolin, et al. Learning in-place residual homogeneity for single image detail enhancement[J]. Journal of Electronic Imaging, 2020, 29(4): 043016. doi: 10.1117/1.jei.29.4.043016.
    [32]
    ZHANG Kai, LIANG Jingyun, VAN GOOL L, et al. Designing a practical degradation model for deep blind image super-resolution[C]. 2021 IEEE/CVF International Conference on Computer Vision (ICCV), Montreal, Canada, 2021: 4771–4780. doi: 10.1109/iccv48922.2021.00475.
    [33]
    ARBELÁEZ P, MAIRE M, FOWLKES C, et al. Contour detection and hierarchical image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(5): 898–916. doi: 10.1109/TPAMI.2010.161.
    [34]
    DONG Chao, LOY C C, HE Kaiming, et al. Learning a deep convolutional network for image super-resolution[C]. 13th European Conference on Computer Vision -- ECCV 2014, Zurich, Switzerland, 2014: 184–199. doi: 10.1007/978-3-319-10593-2_13.
    [35]
    ZHANG Qing, JIANG Hao, NIE Yongwei, et al. Pyramid texture filtering[J]. ACM Transactions on Graphics (TOG), 2023, 42(4): 110. doi: 10.1145/3592120.
    [36]
    LIU Wei, ZHANG Pingping, CHEN Xiaogang, et al. Embedding bilateral filter in least squares for efficient edge-preserving image smoothing[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2020, 30(1): 23–35. doi: 10.1109/TCSVT.2018.2890202.
    [37]
    LIU Wei, ZHANG Pingping, LEI Yinjie, et al. A generalized framework for edge-preserving and structure-preserving image smoothing[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(10): 6631–6648. doi: 10.1109/TPAMI.2021.3097891.
    [38]
    DMITRY U, VEDALDI A, and VICTOR L. Deep image prior[J]. International Journal of Computer Vision, 2020, 128(7): 1867–1888. doi: 10.1007/s11263-020-01303-4.
    [39]
    LI Mingjia, FU Yuanbin, LI Xinhui, et al. Deep flexible structure preserving image smoothing[C]. The 30th ACM International Conference on Multimedia, Lisboa, Portugal, 2022: 1875–1883. doi: 10.1145/3503161.3547857.
    [40]
    WANG Jie, WANG Yongzhen, FENG Yidan, et al. Contrastive semantic-guided image smoothing network[J]. Computer Graphics Forum, 2022, 41(7): 335–346. doi: 10.1111/cgf.14681.
    [41]
    HE Xuyi, QUAN Yuhui, XU Yong, et al. Image smoothing via multiscale global perception[J]. IEEE Signal Processing Letters, 2024, 31: 411–415. doi: 10.1109/LSP.2024.3354549.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(3)

    Article Metrics

    Article views (95) PDF downloads(21) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return