Advanced Search
Turn off MathJax
Article Contents
JIANG He, SUN Mang, ZHENG Zhou, WU Peilin, CHENG Deqiang, ZHOU Chen. Kepler’s Laws Inspired Single Image Detail Enhancement Algorithm[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250455
Citation: JIANG He, SUN Mang, ZHENG Zhou, WU Peilin, CHENG Deqiang, ZHOU Chen. Kepler’s Laws Inspired Single Image Detail Enhancement Algorithm[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250455

Kepler’s Laws Inspired Single Image Detail Enhancement Algorithm

doi: 10.11999/JEIT250455 cstr: 32379.14.JEIT250455
Funds:  The National Natural Science Foundation of China (52304182, 52204177), National Key Research and Development Program of China (2023YFC2907600, 2021YFC2902701, 2021YFC2902702)
  • Received Date: 2025-05-26
  • Accepted Date: 2025-11-03
  • Rev Recd Date: 2025-11-03
  • Available Online: 2025-11-12
  •   Objective  In recent years, single-image detail enhancement based on residual learning have attracted extensive attention. These algorithms update the residual layer by leveraging the similarity between the residual layer and the detail layer, and then linearly combine it with the original image to enhance image details. However, this update process is a greedy algorithm, which is prone to trapping the system in local optima, thereby limiting the overall performance. Inspired by Kepler’s laws, this study analogizes the residual update to the dynamic adjustment of planetary positions. By applying Kepler's laws and calculating the global optimal position of the planets, precise updates of the residual layer are achieved.  Methods  The input image is divided into multiple blocks. For each block, its candidate blocks are regarded as “lanets”, and the best matching block is treated as a “star”. The positions of the “planets” and the “star” are updated by calculating the differences between each “planet” and the original image block until the positions converge, thereby determining the location of the global optimal matching block.  Results and Discussions  In this study, 16 algorithms are tested on three datasets at two different magnification levels (Table 1). The test results show that the proposed algorithm performs excellently in both PSNR and SSIM evaluations. During the detail enhancement process, compared with other algorithms, the proposed algorithm demonstrates stronger edge preservation capabilities (Fig.7). However, the algorithm proposed in this paper is not robust to noise (Fig.8-Fig.10), and the performance of the detail-enhanced images continues to decline as the noise intensity increases (Fig.11). Both the initial gravitational constant and the gravitational attenuation rate constant show a fluctuating trend, that is, they first increase and then decrease (Fig.12). When the gradient loss and texture loss weights are set to 0.001, the KLDE system achieves the best performance (Fig.13).  Conclusions  This study proposes a single-image detail enhancement algorithm inspired by Keple’s laws. By analogizing the residual update process to the dynamic adjustment of planetary positions, the algorithm utilizes Kepler's laws to optimize the update of residual layers, alleviating the local optimum problem caused by greedy search and achieving more precise image detail enhancement. Experimental results show that this algorithm outperforms existing methods in both visual effects and quantitative metrics, and can achieve natural enhancement performance. However, it is worth noting that the algorithm has a relatively long running time, with the computational bottleneck being limited by the iterative update of candidate blocks and the calculation of parameters such as gravity. Future work will focus on optimizing the algorithm structure to reduce invalid searches and improve system operation efficiency. Additionally, this algorithm does not require training and has good performance, and it shows potential and promotion value in scenarios such as high-precision offline image enhancement.
  • loading
  • [1]
    徐少平, 熊明海, 周常飞. 利用近清图像空间搜索的深度图像先验降噪模型[J]. 电子与信息学报, 2024, 46(11): 4229–4235. doi: 10.11999/JEIT240114.

    XU Shaoping, XIONG Minghai, ZHOU Changfei. Deep Image Prior Denoising Model Using Relatively Clean Image Space Search[J]. Journal of Electronics & Information Technology, 2024, 46(11): 4229–4235. doi: 10.11999/JEIT240114.
    [2]
    程德强, 袁航, 钱建生, 等. 基于深层特征差异性网络的图像超分辨率算法[J]. 电子与信息学报, 2024, 46(3): 1033–1042. doi: 10.11999/JEIT230197.

    CHENG Deqiang, YUAN Hang, QIAN Jiansheng, KOU Qiqi, JIANG He. Image Super-Resolution Algorithms Based on Deep Feature Differentiation Network[J]. Journal of Electronics & Information Technology, 2024, 46(3): 1033–1042. doi: 10.11999/ JEIT230179. doi: 10.11999/JEIT230197.
    [3]
    Li F, Bai H, Zhao Y. Detail-preserving image super-resolution via recursively dilated residual network[J]. Neurocomputing, 2019, 358: 285–293. doi: 10.1016/j.neucom.2019.05.042.
    [4]
    Zhao M, Cao G, Huang X, et al. Hybrid transformer-CNN for real image denoising[J]. IEEE Signal Processing Letters, 2022, 29: 1252–1256. doi: 10.1109/LSP.2022.3176486.
    [5]
    Cao G, Tian H, Yu L, et al. Acceleration of histogram‐based contrast enhancement via selective downsampling[J]. IET Image Processing, 2018, 12(3): 447–452. doi: 10.1049/iet-ipr.2017.0789.
    [6]
    Narendra P M. A separable median filter for image noise smoothing[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1981(1): 20–29. doi: 10.1109/tpami.1981.4767047.
    [7]
    Tomasi C, Manduchi R. Bilateral filtering for gray and color images[C]//International Conference on Computer Vision, IEEE, 1998: 839-846. doi: 10.1109/iccv.1998.710815.
    [8]
    He K, Sun J, Tang X. Guided image filtering[J]. Transactions on Pattern Analysis and Machine Intelligence, IEEE, 2012, 35(6): 1397–1409. doi: 10.1109/TPAMI.2012.213.
    [9]
    Li Z, Zheng J, Zhu Z, et al. Weighted guided image filtering[J]. IEEE Transactions on Image processing, 2014, 24(1): 120–129. doi: 10.1109/TIP.2014.2371234.
    [10]
    Kou F, Chen W, Wen C, et al. Gradient domain guided image filtering[J]. IEEE Transactions on Image Processing, 2015, 24(11): 4528–4539. doi: 10.1109/TIP.2015.2468183.
    [11]
    Cheng J, Li Z, Gu Z, et al. Structure-preserving guided retinal image filtering and its application for optic disk analysis[J]. IEEE Transactions on Medical Imaging, 2018, 37(11): 2536–2546. doi: 10.1109/TMI.2018.2838550.
    [12]
    Sun Z, Han B, Li J, et al. Weighted guided image filtering with steering kernel[J]. IEEE Transactions on Image Processing, 2019, 29: 500–508.
    [13]
    Tan A, Liao H, Zhang B, et al. Infrared Image Enhancement Algorithm Based on Detail Enhancement Guided Image Filtering[J]. The Visual Computer, 2023, 39: 6491–6502. doi: 10.1007/s00371-022-02741-6.
    [14]
    Li J, Han Y, Gao Y, et al. An enhance relative total variation with BF model for edge-preserving image smoothing[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2023, 33(10): 5420–5432. doi: 10.1109/TCSVT.2023.3255208.
    [15]
    Rudin L I, Osher S, Fatemi E. Nonlinear total variation based noise removal algorithms[J]. Physica D: nonlinear phenomena, 1992, 60(1-4): 259–268. doi: 10.1016/0167-2789(92)90242-F.
    [16]
    Xu L, Yan Q, Xia Y, et al. Structure extraction from texture via relative total variation[J]. ACM Transactions on Graphics (TOG), 2012, 31(6): 1–10. doi: 10.1145/2366145.2366158.
    [17]
    Liu W, Zhang P, Huang X, et al. Real-time image smoothing via iterative least squares[J]. ACM Transactions on Graphics (TOG), 2020, 39(3): 1–24. doi: 10.1145/3388887.
    [18]
    Liu W, Zhang P, Qin H, et al. Fast Global Image Smoothing via Quasi Weighted Least Squares[J]. International Journal of Computer Vision, 2024: 1-30. doi: 10.1007/s11263-024-02105-8.
    [19]
    He L, Xie Y, Xie S, et al. Iterative self-guided image filtering[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2024, 34(8): 7537–7549. doi: 10.1109/TCSVT.2024.3374758.
    [20]
    Li S, Liu Y, Zeng J, et al. Image smoothing method based on global gradient sparsity and local relative gradient constraint optimization[J]. Scientific Reports, 2024, 14(1): 15152. doi: 10.1038/s41598-024-65886-5.
    [21]
    Sasaki T, Bandoh Y, Kitahara M. Sparse Regularization Based on Reverse Ordered Weighted L 1-Norm and Its Application to Edge-Preserving Smoothing[C]// International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2024: 9531-9535. doi: 10.1109/ICASSP48485.2024.10448119.
    [22]
    Li J, Han Y, Gao Y, et al. An enhance relative total variation with BF model for edge-preserving image smoothing[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2023, 33(10): 5420–5432. doi: 10.1109/TCSVT.2023.3255208.
    [23]
    Qi H, Li F, Chen P, et al. Edge-preserving image restoration based on a weighted anisotropic diffusion model[J]. Pattern Recognition Letters, 2024, 184: 80–88. doi: 10.1016/j.patrec.2024.06.007.
    [24]
    Xu L, Ren J, Yan Q, et al. Deep edge-aware filters[C]//International Conference on Machine Learning. , 2015: 1669-1678.
    [25]
    Liu S, Pan J, Yang M H. Learning recursive filters for low-level vision via a hybrid neural network[C]// European Conference on Computer Vision, 2016: 560-576. doi: 10.1007/978-3-319-46493-0_34.
    [26]
    Fan Q, Yang J, Hua G, et al. A generic deep architecture for single image reflection removal and image smoothing[C]//International Conference on Computer Vision, IEEE, 2017: 3238-3247. doi: 10.1109/iccv.2017.351.
    [27]
    Yang Y, Tang L, Yan T, et al. Parameterized L0 Image Smoothing With Unsupervised Learning[J]. IEEE Transactions on Emerging Topics in Computational Intelligence, 2024, 8(2): 1938–1951. doi: 10.1109/TETCI.2024.3359060.
    [28]
    Zhang F, Tian M, Li Z, et al. Lookup table meets local laplacian filter: pyramid reconstruction network for tone mapping[J]. Advances in Neural Information Processing Systems, 2023, 36: 57558–57569. doi: 10.48550/arXiv.2310.17190.
    [29]
    Qi H, Tan S, Luo X. Self-supervised dual generative networks for edge-preserving image smoothing [C]//IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2024: 7215-7219. doi : 10.1109/ICASSP48485.2024.10448288.
    [30]
    Kim D, Park J, Jung J, et al. Lens distortion correction and enhancement based on local self-similarity for high-quality consumer imaging systems[J]. IEEE Transactions on Consumer Electronics, 2014, 60(1): 18–22. doi: 10.1109/tce.2014.6780920.
    [31]
    Tao X, Zhou C, Shen X, et al. Zero-order reverse filtering[C]//International Conference on Computer Vision, IEEE, 2017: 222-230. doi: 10.1109/ iccv.2017.33.
    [32]
    Jiang H, Asad M, Huang X, et al. Learning in-place residual homogeneity for single image detail enhancement[J]. Journal of Electronic Imaging, 2020, 29(4): 043016–043016. doi: 10.1117/1.jei.29.4.043016.
    [33]
    Zhang K, Liang J, Van Gool L, et al. Designing a practical degradation model for deep blind image super-resolution[C]//International Conference on Computer Vision, IEEE, 2021: 4791-4800. doi: 10.1109/iccv48922.2021.00475.
    [34]
    Arbelaez P, Maire M, Fowlkes C, et al. Contour detection and hierarchical image segmentation[J]. IEEE transactions on pattern analysis and machine intelligence, 2010, 33(5): 898–916. doi: 10.1109/ TPAMI.2010.161. doi: 10.1109/TPAMI.2010.161.
    [35]
    Dong C, Loy C C, He K, et al. Learning a deep convolutional network for image super-resolution[C]//European Conference on Computer Vision, 2014: 184-199. doi: 10.1007/978-3-319-10593-2_13.
    [36]
    Zhang Q, Jiang H, Nie Y, et al. Pyramid Texture Filtering[J]. ACM Transactions on Graphics (TOG), 2023, 42(4): 1–11. doi: 10.1145/3592120.
    [37]
    Liu W, Zhang P, Chen X, et al. Embedding bilateral filter in least squares for efficient edge-preserving image smoothing[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2018, 30(1): 23–35. doi: 10.1109/TCSVT.2018.2890202.
    [38]
    Liu W, Zhang P, Lei Y, et al. A generalized framework for edge-preserving and structure-preserving image smoothing[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 44(10): 6631–6648. doi: 10.1109/TPAMI.2021.3097891.
    [39]
    Dmitry U, Vedaldi A, Victor L. Deep image prior[J]. International Journal of Computer Vision, 2020, 128(7): 1867-1888. [37] doi: 10.1007/s11263-020-01303-4.
    [40]
    Li M, Fu Y, Li X, et al. Deep flexible structure preserving image smoothing[C]//ACM International Conference on Multimedia, 2022: 1875-1883. doi: 10.1145/3503161.3547857.
    [41]
    Wang J, Wang Y, Feng Y, et al. Contrastive Semantic‐Guided Image Smoothing Network [C]//Computer Graphics Forum. 2022, 41(7): 335–346. doi: 10.1111/ cgf.14681.
    [42]
    He X, Quan Y, Xu Y, et al. Image Smoothing via Multiscale Global Perception[J]. IEEE Signal Processing Letters, 2024, 31: 411–415. doi: 10.1109/ LSP.2024.3354549. doi: 10.1109/LSP.2024.3354549.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(3)

    Article Metrics

    Article views (20) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return