| Citation: | YAN Yandong, LI Chenxi, LI Shijie, YANG Yang, GE Yuhao, HUANG Yu. Research on Data Recovery for the Power Grid Industry Based on Diffusion Models[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250435 |
| [1] |
秀春男. 张家口公司 解锁智慧电网运维密码[J]. 华北电业, 2025(2): 12–13.
XIU Chunnan. Zhangjiakou Company unlocks the code of smart grid operation and maintenance[J]. North China Power, 2025(2): 12–13. (查阅网上资料, 未找到本条文献英文翻译, 请确认).
|
| [2] |
黄耀辉, 何浩然, 陈绍铭, 等. 基于深度学习的电力系统数据质量提升研究综述[J]. 电力系统自动化, 2023, 47(15): 175–187. doi: 10.7500/AEPS20221227007. (查阅网上资料,未找到本条文献信息,请确认).
HUANG Yaohui, HE Haoran, CHEN Shaoming, et al. Review of research on improving power system data quality based on deep learning[J]. Automation of Electric Power Systems, 2023, 47(15): 175–187. doi: 10.7500/AEPS20221227007.
|
| [3] |
李欣, 吴凌霄, 李新宇, 等. 基于缺失数据插补和改进集成策略的电力系统暂态稳定评估[J]. 电力系统及其自动化学报, 2025, 37(8): 38–48. doi: 10.19635/j.cnki.csu-epsa.001525.
LI Xin, WU Lingxiao, LI Xinyu, et al. Transient stability assessment of power system based on missing data imputation and improved ensemble strategy[J]. Proceedings of the CSU-EPSA, 2025, 37(8): 38–48. doi: 10.19635/j.cnki.csu-epsa.001525.
|
| [4] |
钟尧, 刘清蝉, 李昕泓, 等. 计及非负和低秩特性的用电数据缺失值插补[J]. 重庆大学学报, 2025, 48(9): 1–11. doi: 10.11835/j.issn.1000-582X.2024.214.
ZHONG Yao, LIU Qingchan, LI Xinhong, et al. Complete electricity data reconstruction based on weighted nonnegative matrix factorization[J]. Journal of Chongqing University, 2025, 48(9): 1–11. doi: 10.11835/j.issn.1000-582X.2024.214.
|
| [5] |
马燕玲. 基于线性回归法的电力计量数据缺失重构研究[J]. 电气技术与经济, 2025(2): 46–47, 54. doi: 10.3969/j.issn.1673-8845.2025.02.016.
MA Yanling. Research on reconstruction of missing electric energy metering data based on linear regression method[J]. Electrical Equipment and Economy, 2025(2): 46–47, 54. doi: 10.3969/j.issn.1673-8845.2025.02.016. (查阅网上资料,未找到本条文献英文翻译,请确认).
|
| [6] |
YANG Ling, ZHANG Zhilong, SONG Yang, et al. Diffusion models: A comprehensive survey of methods and applications[J]. ACM Computing Surveys, 2024, 56(7): 105. doi: 10.1145/3626235.
|
| [7] |
LUO C. Understanding diffusion models: A unified perspective[Z]. arXiv preprint arXiv: 2208.11970, 2022. doi: 10.48550/arXiv.2208.11970. (查阅网上资料,请作者核对文献类型及格式是否正确并确认修改是否正确).
|
| [8] |
郑骁麟, 王天昊, 王凯奇, 等. 配电系统伪量测数据增强方法[J/OL]. 电力系统及其自动化学报, 1–10. https://doi.org/10.19635/j.cnki.csu-epsa.001607, 2025.
ZHENG Xiaolin, WANG Tianhao, WANG Kaiqi, et al. Data enhancement of pseudo-measurement in power distribution system[J/OL]. Proceedings of the CSU-EPSA, 1–10. https://doi.org/10.19635/j.cnki.csu-epsa.001607, 2025.
|
| [9] |
庞传军, 张波, 余建明. 基于LSTM循环神经网络的短期电力负荷预测[J]. 电力工程技术, 2021, 40(1): 175–180,194. doi: 10.12158/j.2096-3203.2021.01.025.
PANG Chuanjun, ZHANG Bo, and YU Jianming. Short-term power load forecasting based on LSTM recurrent neural network[J]. Electric Power Engineering Technology, 2021, 40(1): 175–180,194. doi: 10.12158/j.2096-3203.2021.01.025.
|
| [10] |
雷傲宇, 高永强, 王嘉琦, 等. 基于多测点数据相关性的PMU量测谐波数据缺失填补方法[J/OL]. 南方电网技术, 1–9. http://kns.cnki.net/kcms/detail/44.1643.tk.20250421.1656.004.html, 2025.
LEI Aoyu, GAO Yongqiang, WANG Jiaqi, et al. Method for filling harmonic data missing in PMU measurement based on the correlation of multi-measurement point data[J/OL]. Southern Power System Technology, 1–9. http://kns.cnki.net/kcms/detail/44.1643.tk.20250421.1656.004.html, 2025.
|
| [11] |
HO J, JAIN A, and ABBEEL P. Denoising diffusion probabilistic models[C]. Proceedings of the 34th International Conference on Neural Information Processing Systems, Vancouver, Canada, 2020: 574.
|
| [12] |
SONG Yang, SOHL-DICKSTEIN J, KINGMA D P, et al. Score-based generative modeling through stochastic differential equations[C]. Proceedings of the 9th International Conference on Learning Representations, Austria, 2021: 1–35. (查阅网上资料, 未找到本条文献出版城市信息, 请确认并补充).
|
| [13] |
SONG Yang, DURKAN C, MURRAY I, et al. Maximum likelihood training of score-based diffusion models[C]. Proceedings of the 35th International Conference on Neural Information Processing Systems, 2021: 109. (查阅网上资料, 未找到本条文献出版地信息, 请确认并补充).
|
| [14] |
NICHOL A Q and DHARIWAL P. Improved denoising diffusion probabilistic models[C]. Proceedings of the 38th International Conference on Machine Learning, 2021: 8162–8171. (查阅网上资料, 未找到本条文献出版地信息, 请确认并补充).
|
| [15] |
KARRAS T, AITTALA M, AILA T, et al. Elucidating the design space of diffusion-based generative models[C]. Proceedings of the 36th International Conference on Neural Information Processing Systems, New Orleans, USA, 2022: 1926.
|
| [16] |
ALCARAZ J M L and STRODTHOFF N. Diffusion-based time series imputation and forecasting with structured state space models[Z]. arXiv preprint arXiv: 2208.09399, 2022. doi: 10.48550/arXiv.2208.09399. (查阅网上资料,请作者核对文献类型及格式是否正确并确认修改是否正确).
|
| [17] |
TASHIRO Y, SONG Jiaming, SONG Yang, et al. CSDI: Conditional score-based diffusion models for probabilistic time series imputation[C]. Proceedings of the 35th International Conference on Neural Information Processing Systems, 2021: 1900. (查阅网上资料, 未找到本条文献出版地信息, 请确认并补充).
|
| [18] |
ROMBACH R, BLATTMANN A, LORENZ D, et al. High-resolution image synthesis with latent diffusion models[C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, USA, 2022: 10674–10685. doi: 10.1109/CVPR52688.2022.01042.
|
| [19] |
ZHOU Haoyi, ZHANG Shanghang, PENG Jieqi, et al. Informer: Beyond efficient transformer for long sequence time-series forecasting[C]. Proceedings of the 35th AAAI Conference on Artificial Intelligence, Virtual Conference, 2021: 11106–11115. doi: 10.1609/aaai.v35i12.17325. (查阅网上资料,未找到本条文献出版地信息,请确认并补充).
|
| [20] |
HEBRAIL G and BERARD A. Individual household electric power consumption[EB/OL]. https://doi.org/10.24432/C58K54, 2006.
|
| [21] |
ZENG Ailing, CHEN Muxi, ZHANG Lei, et al. Are transformers effective for time series forecasting?[C]. Proceedings of the 37th AAAI Conference on Artificial Intelligence, Washington, USA, 2023: 11121–11128. doi: 10.1609/aaai.v37i9.26317.
|
| [22] |
BAI Shaojie, KOLTER J Z, and KOLTUN V. An empirical evaluation of generic convolutional and recurrent networks for sequence modeling[Z]. arXiv preprint arXiv: 1803.01271, 2018. doi: 10.48550/arXiv.1803.01271. (查阅网上资料,请作者核对文献类型及格式是否正确).
|
| [23] |
GUPTA P, MEHLAWAT M K, and KHAN A Z. Multi-period portfolio optimization using coherent fuzzy numbers in a credibilistic environment[J]. Expert Systems with Applications, 2021, 167: 114135. doi: 10.1016/j.eswa.2020.114135.
|
| [24] |
GOODFELLOW I J, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial nets[C]. Proceedings of the 28th International Conference on Neural Information Processing Systems, Montreal, Canada, 2014: 2672–2680.
|
| [25] |
KINGMA D P and WELLING M. Auto-encoding variational bayes[C]. Proceedings of the 2nd International Conference on Learning Representations, Banff, Canada, 2014.
|
| [26] |
CHEN Peng, ZHANG Yingying, CHENG Yunyao, et al. Pathformer: Multi-scale transformers with adaptive pathways for time series forecasting[C]. Proceedings of the 12th International Conference on Learning Representations, Vienna, Austria, 2024.
|