Advanced Search
Turn off MathJax
Article Contents
CHEN Lu, WANG Jiang Yuan, ZHONG Kuncai, ZHANG Ji Liang. Overview of Stochastic Computing Applications and Challenges[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250413
Citation: CHEN Lu, WANG Jiang Yuan, ZHONG Kuncai, ZHANG Ji Liang. Overview of Stochastic Computing Applications and Challenges[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250413

Overview of Stochastic Computing Applications and Challenges

doi: 10.11999/JEIT250413 cstr: 32379.14.JEIT250413
Funds:  The National Natural Science Foundation of China (62122023), The Natural Science Foundation of Hunan Province (2025JJ60433), The Natural Science Foundation of Changsha City (kq2402003)
  • Received Date: 2025-05-13
  • Rev Recd Date: 2025-09-15
  • Available Online: 2025-09-19
  •   Significance   This paper systematically organizes and analyzes the historical progress, fundamental characteristics, application scenarios, and challenges of Stochastic Computing (SC), making four main contributions. (1) Integration of theoretical frameworks and refinement of knowledge systems. By reviewing the evolution of SC from its theoretical origins in the 1940s to its resurgence in the 21st-century Internet of Things era, the paper establishes a coherent theoretical trajectory. The analysis of unipolar and bipolar encoding mechanisms, stochastic bitstream generation architectures, and computational error models provides researchers with a unified technical framework. (2) Demonstration of application potential. Through examinations of three representative scenarios, namely digital filters, image processing, and neural networks, the paper highlights SC’s advantages in hardware efficiency and fault tolerance. For instance, XNOR-gate and multiplexer-based digital filter designs reduce hardware resource consumption by several orders of magnitude, whereas neural network acceleration schemes that employ low-discrepancy sequence-based stochastic sources markedly improve energy efficiency in edge AI devices. These case studies provide implementable technical pathways for engineering practice. (3) Identification of critical challenges and evaluation of solutions. Addressing three major challenges, including correlation accumulation, excessive hardware overhead in random number generation, and the precision–efficiency trade-off, the paper not only quantifies their technical origins but also evaluates the effectiveness and limitations of existing solutions, offering clear optimization directions for further research. (4) Strategic guidance for future research. By integrating emerging technological trends, the paper proposes directions such as algorithm–hardware co-design, dynamic correlation suppression, and adaptive precision adjustment. Special emphasis is placed on the potential of reconfigurable methods and novel architectures to overcome current bottlenecks, outlining research frontiers for both academia and industry.  Conclusions   This paper systematically reviews the historical development and foundational principles of SC, elaborates on representative application scenarios, and examines the core technical challenges it currently faces. Compared with traditional deterministic numerical computation, SC offers advantages including low hardware overhead, high asymptotic precision, and strong fault tolerance, which have enabled its adoption in digital signal processing, neural network acceleration, and edge computing. Nevertheless, several critical challenges persist and must be resolved to advance its practical deployment.  Prospects   As a promising pathway to address the computing power and energy efficiency challenges of the post-Moore era, the future development of SC will emphasize overcoming technical bottlenecks and adapting to emerging application scenarios. Advances in reconfigurable computing architectures, memristor-based memory devices, and compute-in-memory chips provide new opportunities for architectural innovation and performance optimization of SC systems. These developments further enhance its intrinsic advantages of low power consumption, high fault tolerance, and progressive precision, positioning SC as a key technological foundation for building high-efficiency computing systems in the post-Moore era.
  • loading
  • [1]
    BURKS A W, GOLDSTINE H H, and VON NEUMANN J. Preliminary discussion of the logical design of an electronic computing instrument[R]. Princeton, 1946. (查阅网上资料, 未找到出版信息, 请确认补充).
    [2]
    VON NEUMANN J. Probabilistic logics and the synthesis of reliable organisms from unreliable components[J]. Automata Studies, 1956, 34(34): 43–98. doi: 10.1515/9781400882618-003. (查阅网上资料,未找到本条文献卷期页码信息,请确认).
    [3]
    GAINES B R. Stochastic computing[C]. Proceedings of the April 18-20, 1967, Spring Joint Computer Conference, Atlantic City, USA, 1967: 149–156. doi: 10.1145/1465482.1465505.
    [4]
    GAINES B R. Stochastic computing systems[M]. TOU J T. Advances in Information Systems Science: Volume 2. New York: Springer, 1969: 37–172. doi: 10.1007/978-1-4899-5841-9_2.
    [5]
    POPPELBAUM W J, AFUSO C, and ESCH J W. Stochastic computing elements and systems[C]. Proceedings of the November 14-16, 1967, Fall Joint Computer Conference, Anaheim, USA, 1967: 635–644. doi: 10.1145/1465611.1465696.
    [6]
    XIU Liming. Time Moore: Exploiting Moore's law from the perspective of time[J]. IEEE Solid-State Circuits Magazine, 2019, 11(1): 39–55. doi: 10.1109/MSSC.2018.2882285.
    [7]
    POPPELBAUM W J. Statistical processors[J]. Advances in Computers, 1976, 14: 187–230. doi: 10.1016/S0065-2458(08)60452-0.
    [8]
    BROWN B D and CARD H C. Stochastic neural computation. I. Computational elements[J]. IEEE Transactions on Computers, 2001, 50(9): 891–905. doi: 10.1109/12.954505.
    [9]
    BROWN B D and CARD H C. Stochastic neural computation. II. Soft competitive learning[J]. IEEE Transactions on Computers, 2001, 50(9): 906–920. doi: 10.1109/12.954506.
    [10]
    TORAL S L, QUERO J M, and FRANQUELO L G. Stochastic pulse coded arithmetic[C]. 2000 IEEE International Symposium on Circuits and Systems (ISCAS), Geneva, Switzerland, 2000: 599–602. doi: 10.1109/ISCAS.2000.857166.
    [11]
    MARIN S L T, REBOUL J M Q, and FRANQUELO L G. Digital stochastic realization of complex analog controllers[J]. IEEE Transactions on Industrial Electronics, 2002, 49(5): 1101–1109. doi: 10.1109/TIE.2002.803233.
    [12]
    LIU Siting and HAN Jie. Dynamic stochastic computing for digital signal processing applications[C]. 2020 Design, Automation & Test in Europe Conference & Exhibition (DATE), Grenoble, France, 2020: 604–609. doi: 10.23919/DATE48585.2020.9116562.
    [13]
    ZHONG Kuncai, LI Zexi, JIN Haoran, et al. Exploiting uniform spatial distribution to design efficient random number source for stochastic computing[C]. 2022 IEEE/ACM International Conference on Computer Aided Design (ICCAD), San Diego, USA, 2022: 1–9.
    [14]
    CHENG Zezhi, QIN Yabo, WANG Zongwei, et al. A high-throughput and configurable TRNG based on dual-mode memristor for stochastic computing[C]. 2023 IEEE International Conference on Integrated Circuits, Technologies and Applications (ICTA), Hefei, China, 2023: 108–109. doi: 10.1109/ICTA60488.2023.10364295.
    [15]
    TEMENOS N, NTINAS V, SOTIRIADIS P P, et al. Time-based memristor crossbar array programming for stochastic computing parallel sequence generation[C]. 2023 IEEE International Symposium on Circuits and Systems (ISCAS), Monterey, USA, 2023: 1–5. doi: 10.1109/ISCAS46773.2023.10181967.
    [16]
    ROGERS E G, MUGDHO S S, GUPTE K K, et al. StoX-Net: Stochastic processing of partial sums for efficient in-memory computing DNN accelerators[C]. 2024 IEEE International Conference on Rebooting Computing (ICRC), San Diego, USA, 2024: 1–9. doi: 10.1109/ICRC64395.2024.10937005.
    [17]
    ZHOU Yi. Joint stochastic computation offloading and trajectory optimization for unmanned-aerial-vehicle-assisted mobile edge computing[J]. IEEE Access, 2025, 13: 2034–2044. doi: 10.1109/ACCESS.2024.3519598.
    [18]
    CHEN Yuhao, LI Hongge, SONG Yinjie, et al. Hybrid stochastic computing of linear time O(N) and its in-memory computing for high performances[C]. 2024 IEEE Computer Society Annual Symposium on VLSI (ISVLSI), Knoxville, USA, 2024: 753–756. doi: 10.1109/ISVLSI61997.2024.00146.
    [19]
    WANG Hai, FENG Yang, ZHAN Xuepeng, et al. Flash-based computing-in-memory (CiM) towards stochastic computing with low power-consumption and high noise-immunity[C]. 2024 IEEE Silicon Nanoelectronics Workshop (SNW), Honolulu, USA, 2024: 45–46. doi: 10.1109/SNW63608.2024.10639216.
    [20]
    HOQUE M M and KOVURI K. “Time and energy trade-offs for mobile edge computing: A comparative study of task offloading strategies”[C]. 2025 1st International Conference on AIML-Applications for Engineering & Technology (ICAET), Pune, India, 2025: 1–5. doi: 10.1109/ICAET63349.2025.10932256.
    [21]
    AGWA S and PRODROMAKIS T. Bent-pyramid: Towards a quasi-stochastic data representation for AI hardware[C]. 2023 21st IEEE Interregional NEWCAS Conference (NEWCAS), Edinburgh, United Kingdom, 2023: 1–5. doi: 10.1109/NEWCAS57931.2023.10198194.
    [22]
    ABDELFATTAH M A, AHMED H O, and ABDELGHANY M A. 16-Bit SABP: Quasi-stochastic data representation unit for AI hardware using FPGA[C]. 2024 IEEE 37th International System-on-Chip Conference (SOCC), Dresden, Germany, 2024: 1–6. doi: 10.1109/SOCC62300.2024.10737766.
    [23]
    SASMAL M, JOSEPH T, and T S B. Approximate multiplier design with LFSR-based stochastic sequence generators for edge AI[J]. IEEE Computer Architecture Letters, 2024, 23(1): 91–94. doi: 10.1109/LCA.2024.3379002. (查阅网上资料,不确定标黄作者信息是否正确,请确认).
    [24]
    ALAGHI A, QIAN Weikang, and HAYES J P. The promise and challenge of stochastic computing[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2018, 37(8): 1515–1531. doi: 10.1109/TCAD.2017.2778107.
    [25]
    ALAGHI A and HAYES J P. Exploiting correlation in stochastic circuit design[C]. 2013 IEEE 31st International Conference on Computer Design (ICCD), Asheville, USA, 2013: 39–46. doi: 10.1109/ICCD.2013.6657023.
    [26]
    CHEN Hao and HAN Jie. Stochastic computational models for accurate reliability evaluation of logic circuits[C]. Proceedings of the 20th Symposium on Great Lakes Symposium on VLSI, Providence, USA, 2010: 61–66. doi: 10.1145/1785481.1785497.
    [27]
    ZHANG Da and LI Hui. A stochastic-based FPGA controller for an induction motor drive with integrated neural network algorithms[J]. IEEE Transactions on Industrial Electronics, 2008, 55(2): 551–561. doi: 10.1109/TIE.2007.911946.
    [28]
    CHANG Yunnan and PARHI K K. Architectures for digital filters using stochastic computing[C]. 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, Vancouver, Canada, 2013: 2697–2701. doi: 10.1109/ICASSP.2013.6638146.
    [29]
    ALAWAD M and LIN Mingjie. FIR filter based on stochastic computing with reconfigurable digital fabric[C]. 2015 IEEE 23rd Annual International Symposium on Field-Programmable Custom Computing Machines, Vancouver, Canada, 2015: 92–95. doi: 10.1109/FCCM.2015.32.
    [30]
    ICHIHARA H, SUGINO T, ISHII S, et al. Compact and accurate digital filters based on stochastic computing[J]. IEEE Transactions on Emerging Topics in Computing, 2019, 7(1): 31–43. doi: 10.1109/TETC.2016.2608825.
    [31]
    ZHONG Kuncai, YANG Meng, and QIAN Weikang. Optimizing stochastic computing-based FIR filters[C]. 2018 IEEE 23rd International Conference on Digital Signal Processing (DSP), Shanghai, China, 2018: 1–5. doi: 10.1109/ICDSP.2018.8631799.
    [32]
    PAPACHATZOPOULOS K, ANDRIAKOPOULOS C, and PALIOURAS V. Novel noise-shaping stochastic-computing converters for digital filtering[C]. 2020 IEEE International Symposium on Circuits and Systems (ISCAS), Seville, Spain, 2020: 1–5. doi: 10.1109/ISCAS45731.2020.9180770.
    [33]
    VLACHOS A, TEMENOS N, and SOTIRIADIS P P. Exploring the effectiveness of sigma-delta modulators in stochastic computing-based FIR filtering[C]. 2021 10th International Conference on Modern Circuits and Systems Technologies (MOCAST), Thessaloniki, Greece, 2021: 1–4. doi: 10.1109/MOCAST52088.2021.9493368.
    [34]
    GIVAKI K, KHONSARI A, GHOLAMREZAEI M H, et al. Hardware efficient FIR filter architectures using accurate unary stochastic computing[C]. 2022 IEEE 40th International Conference on Computer Design (ICCD), Olympic Valley, USA, 2022: 754–761. doi: 10.1109/ICCD56317.2022.00115.
    [35]
    LIU Yin and PARHI K K. Architectures for stochastic normalized and modified lattice IIR filters[C]. 2015 49th Asilomar Conference on Signals, Systems and Computers, Pacific Grove, USA, 2015: 1351–1358. doi: 10.1109/ACSSC.2015.7421363.
    [36]
    LAVANYA M and RAVINDRA J. Performance metrics of imprecise multipliers based on proximate compressors for IIR filters[C]. 2018 30th International Conference on Microelectronics (ICM), Sousse, Tunisia, 2018: 96–99. doi: 10.1109/ICM.2018.8704044.
    [37]
    SENGUPTA R, POLIAN I, and HAYES J P. Performance and error tolerance of stochastic computing-based digital filter design[C]. 2024 27th International Symposium on Design & Diagnostics of Electronic Circuits & Systems (DDECS), Kielce, Poland, 2024: 7–12. doi: 10.1109/DDECS60919.2024.10508903.
    [38]
    ALAGHI A, LI Cheng, and HAYES J P. Stochastic circuits for real-time image-processing applications[C]. Proceedings of the 50th Annual Design Automation Conference, Austin, USA, 2013: 1–6. doi: 10.1145/2463209.2488901.
    [39]
    LI Peng, LILJA D J, QIAN Weikang, et al. Computation on stochastic bit streams digital image processing case studies[J]. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2014, 22(3): 449–462. doi: 10.1109/TVLSI.2013.2247429.
    [40]
    NAJAFI M H and SALEHI M E. A fast fault-tolerant architecture for Sauvola local image thresholding algorithm using stochastic computing[J]. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2016, 24(2): 808–812. doi: 10.1109/TVLSI.2015.2415932.
    [41]
    SAUVOLA J and PIETIKÄINEN M. Adaptive document image binarization[J]. Pattern Recognition, 2000, 33(2): 225–236. doi: 10.1016/S0031-3203(99)00055-2.
    [42]
    KAMISIAN I, MARSONO M N, PARAMAN N, et al. Characterization of early termination for stochastic computing image processing circuits[C]. 2024 IEEE 14th Symposium on Computer Applications & Industrial Electronics (ISCAIE), Penang, Malaysia, 2024: 395–400. doi: 10.1109/ISCAIE61308.2024.10576338.
    [43]
    LEE D and KIM Y. Design of a low-cost stochastic computing-based median filter for digital image processing[C]. 2024 21st International SoC Design Conference (ISOCC), Sapporo, Japan, 2024: 298–299. doi: 10.1109/ISOCC62682.2024.10762709.
    [44]
    AYGUN S, NAJAFI M H, IMANI M, et al. Agile simulation of stochastic computing image processing with contingency tables[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2023, 42(10): 3474–3478. doi: 10.1109/TCAD.2023.3243136.
    [45]
    SONG Suwen, LIU Lu, WANG Zhongfeng, et al. Dual-bit-wise stochastic decoding for polar codes[J]. IEEE Transactions on Signal Processing, 2023, 71: 512–524. doi: 10.1109/TSP.2023.3247140.
    [46]
    HU Shuai, HAN Kaining, and HU Jianhao. Low complexity state metric memory reduction for turbo decoding with stochastic quantization[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2024, 71(1): 385–389. doi: 10.1109/TCSII.2023.3300304.
    [47]
    YUAN Bo and PARHI K K. Belief propagation decoding of polar codes using stochastic computing[C]. 2016 IEEE International symposium on circuits and systems (ISCAS), Montreal, Canada, 2016: 157–160. doi: 10.1109/ISCAS.2016.7527194.
    [48]
    SOKOLOVSKII R, GRAELL I AMAT A, and BRÄNNSTRÖM F. Finite-length scaling of SC-LDPC codes with a limited number of decoding iterations[J]. IEEE Transactions on Information Theory, 2023, 69(8): 4869–4888. doi: 10.1109/TIT.2023.3257235.
    [49]
    HU Shuai, HAN Kaining, ZHU Yubin, et al. High throughput and hardware efficient hybrid LDPC decoder using bit-serial stochastic updating[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2023, 70(9): 3653–3664. doi: 10.1109/TCSI.2023.3280201.
    [50]
    LI Yali and BIE Zhisong. LDPC decoding based on hybrid stochastic computing[C]. 2024 4th International Signal Processing, Communications and Engineering Management Conference (ISPCEM), Montreal, Canada, 2024: 7–11. doi: 10.1109/ISPCEM64498.2024.00007.
    [51]
    ZHAKATAYEV A, KIM K, CHOI K, et al. An efficient and accurate stochastic number generator using even-distribution coding[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2018, 37(12): 3056–3066. doi: 10.1109/TCAD.2018.2789732.
    [52]
    SIM H and LEE J. A new stochastic computing multiplier with application to deep convolutional neural networks[C]. Proceedings of the 54th Annual Design Automation Conference 2017, Austin, USA, 2017: 1–6. doi: 10.1145/3061639.3062290.
    [53]
    SHOUSHTARI MOGHADAM M, AYGUN S, RIAHI ALAM M, et al. Accurate and energy-efficient stochastic computing with van der Corput sequences[C]. Proceedings of the 18th ACM International Symposium on Nanoscale Architectures, Dresden, Germany, 2023: 27. doi: 10.1145/3611315.3633265.
    [54]
    ZHANG Ruilin, XIAO Yangjun, LIU Jiawei, et al. A latch-based stochastic number generator for stochastic computing of extended naïve Bayesian network[C]. 2024 International VLSI Symposium on Technology, Systems and Applications (VLSI TSA), HsinChu, Taiwan, 2024: 1–4. doi: 10.1109/VLSITSA60681.2024.10546408.
    [55]
    AGRAWAL A, CHAKRABORTY I, ROY D, et al. Revisiting stochastic computing in the era of nanoscale nonvolatile technologies[J]. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2020, 28(12): 2481–2494. doi: 10.1109/TVLSI.2020.2991679.
    [56]
    ZHAO Lei, ZHANG Youtao, and YANG Jun. SCA: A secure CNN accelerator for both training and inference[C]. 2020 57th ACM/IEEE Design Automation Conference (DAC), San Francisco, USA, 2020: 1–6. doi: 10.1109/DAC18072.2020.9218752.
    [57]
    ZHAO Lei, ZHANG Youtao, and YANG Jun. SRA: A secure ReRAM-based DNN accelerator[C]. Proceedings of the 59th ACM/IEEE Design Automation Conference, San Francisco, USA, 2022: 355–360. doi: 10.1145/3489517.3530440.
    [58]
    ZHANG Yawen, ZHANG Xinyue, SONG Jiahao, et al. Parallel convolutional neural network (CNN) accelerators based on stochastic computing[C]. 2019 IEEE International Workshop on Signal Processing Systems (SiPS), Nanjing, China, 2019: 19–24. doi: 10.1109/SiPS47522.2019.9020615.
    [59]
    SENGUPTA R, POLIAN I, and HAYES J P. Fault tolerance in stochastic circuits for recurrent sequential neural networks[C]. 2024 IEEE 33rd Asian Test Symposium (ATS), Ahmedabad, India, 2024: 1–6. doi: 10.1109/ATS64447.2024.10915353.
    [60]
    FRASSER C F, LINARES-SERRANO P, DE LOS RÍOS I D, et al. Fully parallel stochastic computing hardware implementation of convolutional neural networks for edge computing applications[J]. IEEE Transactions on Neural Networks and Learning Systems, 2023, 34(12): 10408–10418. doi: 10.1109/TNNLS.2022.3166799.
    [61]
    GOLBABAEI B, ZHU Guangxian, KAN Yirong, et al. A non-deterministic training approach for memory-efficient stochastic neural networks[C]. 2023 IEEE 36th International System-on-Chip Conference (SOCC), Santa Clara, USA, 2023: 1–6. doi: 10.1109/SOCC58585.2023.10256838.
    [62]
    MORÁN A, PARRILLA L, ROCA M, et al. Digital implementation of radial basis function neural networks based on stochastic computing[J]. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 2023, 13(1): 257–269. doi: 10.1109/JETCAS.2022.3231708.
    [63]
    ZHU Jingwei, WU Jingguo, YANG Zongru, et al. An area and energy-efficient systolic array accelerator architecture for deep neural networks using stochastic computing[J]. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2025, 33(6): 1582–1595. doi: 10.1109/TVLSI.2025.3550786.
    [64]
    CHEN K C J and SYU W R. High reliable and accurate stochastic computing-based artificial neural network architecture design[C]. 2024 IEEE International Symposium on Circuits and Systems (ISCAS), Singapore, Singapore, 2024: 1–5. doi: 10.1109/ISCAS58744.2024.10558634.
    [65]
    BABU A D and GOMATHY C. Energy-efficient stochastic computing architectures for neural network performance in FPGA systems[C]. 2025 6th International Conference on Mobile Computing and Sustainable Informatics (ICMCSI), Goathgaun, Nepal, 2025: 415–419. doi: 10.1109/ICMCSI64620.2025.10883104.
    [66]
    HU Shuai, HAN Kaining, and HU Jianhao. High performance and hardware efficient stochastic computing elements for deep neural network[C]. 2023 6th World Conference on Computing and Communication Technologies (WCCCT), Chengdu, China, 2023: 181–186. doi: 10.1109/WCCCT56755.2023.10052402.
    [67]
    CHEN Jienan, HU Jianhao, and SOBELMAN G E. Stochastic MIMO detector based on the Markov chain Monte Carlo algorithm[J]. IEEE Transactions on Signal Processing, 2014, 62(6): 1454–1463. doi: 10.1109/TSP.2014.2301131.
    [68]
    CHEN Jienan, HU Jianhao, and ZHOU Jiangyun. Hardware and energy-efficient stochastic LU decomposition scheme for MIMO receivers[J]. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2016, 24(4): 1391–1401. doi: 10.1109/TVLSI.2015.2446481.
    [69]
    QIAN Weikang, LI Xin, RIEDEL M D, et al. An architecture for fault-tolerant computation with stochastic logic[J]. IEEE Transactions on Computers, 2011, 60(1): 93–105. doi: 10.1109/TC.2010.202.
    [70]
    ANDERSON J H, HARA-AZUMI Y, and YAMASHITA S. Effect of LFSR seeding, scrambling and feedback polynomial on stochastic computing accuracy[C]. 2016 Design, Automation & Test in Europe Conference & Exhibition (DATE), Dresden, Germany, 2016: 1550–1555.
    [71]
    ALAGHI A and HAYES J P. Dimension reduction in statistical simulation of digital circuits[C]. Proceedings of the Symposium on Theory of Modeling & Simulation: DEVS Integrative M&S Symposium, Alexandria, USA, 2015: 1–8.
    [72]
    ZHONG Kuncai, LI Zexi, and QIAN Weikang. Towards low-cost high-accuracy stochastic computing architecture for univariate functions: Design and design space exploration[C]. Proceedings of the 2022 Conference & Exhibition on Design, Automation & Test in Europe, Antwerp, Belgium, 2022: 346–351.
    [73]
    LI Zhijing, CHEN Zhao, ZHANG Yili, et al. Simultaneous area and latency optimization for stochastic circuits by D flip-flop insertion[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2019, 38(7): 1251–1264. doi: 10.1109/TCAD.2018.2846660.
    [74]
    SALEHI S A. Area-efficient LFSR-based stochastic number generators with minimum correlation[J]. IEEE Design & Test, 2024, 41(1): 50–59. doi: 10.1109/MDAT.2023.3278619.
    [75]
    CHEN T H, TING P, and HAYES J P. Achieving progressive precision in stochastic computing[C]. 2017 IEEE Global Conference on Signal and Information Processing (GlobalSIP), Montreal, Canada, 2017: 1320–1324. doi: 10.1109/GlobalSIP.2017.8309175.
    [76]
    LEE D and KIM Y. Towards quantized stochastic computing by leveraging reduced precision binary numbers through bit truncation[C]. 2023 IEEE 41st International Conference on Computer Design (ICCD), Washington, USA, 2023: 419–422. doi: 10.1109/ICCD58817.2023.00069.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(1)

    Article Metrics

    Article views (13) PDF downloads(2) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return