Citation: | CUI Hanwen, GAO Yanze, ZHANG Kun, WANG Shizhao, TIAN Zhiqiang, GUO Yuzheng, XIA Zhiliang, ZHANG Zhaofu, HUO Zongliang, LIU Sheng. Analyzing and Mitigating Asymmetric Residual Stress in 3D NAND Scaling Based on Process-dependent Modeling[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250410 |
[1] |
MICHELONI R, ARITOME S, and CRIPPA L. Array architectures for 3-D NAND flash memories[J]. Proceedings of the IEEE, 2017, 105(9): 1634–1649. doi: 10.1109/JPROC.2017.2697000.
|
[2] |
KURATA H, OTSUGA K, KOTABE A, et al. The impact of random telegraph signals on the scaling of multilevel flash memories[C]. The 2006 Symposium on VLSI Circuits, 2006. Digest of Technical Papers, Honolulu, USA, 2006: 112–113. doi: 10.1109/VLSIC.2006.1705335.
|
[3] |
COMPAGNONI C M, SPINELLI A S, GUSMEROLI R, et al. Ultimate accuracy for the NAND flash program algorithm due to the electron injection statistics[J]. IEEE Transactions on Electron Devices, 2008, 55(10): 2695–2702. doi: 10.1109/TED.2008.2003230.
|
[4] |
卜伟海, 夏志良, 赵治国, 等. 后摩尔时代集成电路产业技术的发展趋势[J]. 前瞻科技, 2022, 1(3): 20–41. doi: 10.3981/j.issn.2097-0781.2022.03.002.
BU Weihai, XIA Zhiliang, ZHAO Zhiguo, et al. Development of integrated circuit industrial technologies in the post-moore era[J]. Science and Technology Foresight, 2022, 1(3): 20–41. doi: 10.3981/j.issn.2097-0781.2022.03.002.
|
[5] |
Samsung V-NAND technology[EB/OL]. http://www.samsung.com/us/business/oem-solutions/pdfs/VNAND_technology_WP.pdf.
|
[6] |
JANG J, KIM H S, CHO W, et al. Vertical cell array using TCAT (Terabit Cell Array Transistor) technology for ultra high density NAND flash memory[C]. The 2009 Symposium on VLSI Technology, Kyoto, Japan , 2009: 192–193.
|
[7] |
KANG Dongku, JEONG W, KIM C, et al. 256 Gb 3 b/cell V-NAND flash memory with 48 stacked WL layers[J]. IEEE Journal of Solid-State Circuits, 2017, 52(1): 210–217. doi: 10.1109/JSSC.2016.2604297.
|
[8] |
KIM C, KIM D H, JEONG W, et al. A 512-Gb 3-b/cell 64-stacked WL 3-D-NAND flash memory[J]. IEEE Journal of Solid-State Circuits, 2018, 53(1): 124–133. doi: 10.1109/JSSC.2017.2731813.
|
[9] |
PARK K T, NAM S, KIM D, et al. Three-dimensional 128 Gb MLC vertical NAND flash memory with 24-WL stacked layers and 50 MB/s high-speed programming[J]. IEEE Journal of Solid-State Circuits, 2015, 50(1): 204–213. doi: 10.1109/JSSC.2014.2352293.
|
[10] |
PARK K T, BYEON D S, and KIM D H. A world’s first product of three-dimensional vertical NAND Flash memory and beyond[C]. The 14th Annual Non-Volatile Memory Technology Symposium (NVMTS), Jeju, Korea, 2014: 1–5. doi: 10.1109/NVMTS.2014.7060840.
|
[11] |
MEYER R, FUKUZUMI Y, and DONG Yingda. 3D NAND Scaling in the next decade[C]. The 2022 International Electron Devices Meeting (IEDM), San Francisco, USA, 2022: 26.1. 1–26.1. 4. doi: 10.1109/IEDM45625.2022.10019570.
|
[12] |
HEINECK L and LIU J. 3D NAND flash status and trends[C]. The 2022 IEEE International Memory Workshop (IMW), Dresden, Germany, 2022: 1–4. doi: 10.1109/IMW52921.2022.9779282.
|
[13] |
张源, 罗静茹, 张吉良. SDL PUF: 高可靠自适应偏差锁定PUF电路[J]. 电子与信息学报, 2024, 46(5): 2274–2280. doi: 10.11999/JEIT231313.
ZHANG Yuan, LUO Jingru, and ZHANG Jiliang. SDL PUF: A high reliability self-adaption deviation locking PUF[J]. Journal of Electronics & Information Technology, 2024, 46(5): 2274–2280. doi: 10.11999/JEIT231313.
|
[14] |
ZHANG Yuan, ZHONG Kuncai, and ZHANG Jiliang. DH-TRNG: A dynamic hybrid TRNG with ultra-high throughput and area-energy efficiency[C]. The 61st ACM/IEEE Design Automation Conference, San Francisco, USA, 2024: 1–6. doi: 10.1145/3649329.3656236.
|
[15] |
LEE S H. Technology scaling challenges and opportunities of memory devices[C]. The 2016 IEEE International Electron Devices Meeting (IEDM), San Francisco, USA, 2016: 1.1. 1–1.1. 8. doi: 10.1109/IEDM.2016.7838026.
|
[16] |
KRUV A, ARREGHINI A, VERRECK D, et al. Impact of mechanical stress on 3-D NAND flash current conduction[J]. IEEE Transactions on Electron Devices, 2020, 67(11): 4891–4896. doi: 10.1109/TED.2020.3024450.
|
[17] |
ZHANG Kun, ZHOU Wenxi, LI Tuo, et al. Improvement of warpage and leakage for 3D NAND flash memory[J]. Materials Science in Semiconductor Processing, 2024, 176: 108294. doi: 10.1016/j.mssp.2024.108294.
|
[18] |
SHI Wendian, ZHANG Haixia, ZHANG Guobing, et al. Modifying residual stress and stress gradient in LPCVD Si3N4 film with ion implantation[J]. Sensors and Actuators A: Physical, 2006, 130/131: 352–357. doi: 10.1016/j.sna.2005.10.008.
|
[19] |
WU Kaiyi and POON A W. Stress-released Si3N4 fabrication process for dispersion-engineered integrated silicon photonics[J]. Optics Express, 2020, 28(12): 17708–17722. doi: 10.1364/OE.390171.
|
[20] |
FAN Dongyu, XIA Zhiliang, YANG Tao, et al. An emerging local annealing method for simultaneous crystallization and activation in Xtacking 3-D NAND flash[J]. IEEE Transactions on Semiconductor Manufacturing, 2023, 36(1): 139–143. doi: 10.1109/TSM.2022.3229471.
|
[21] |
KIM B, LEE S, HAH B, et al. 28.2 A high-performance 1Tb 3b/Cell 3D-NAND flash with a 194MB/s write throughput on over 300 layers i[C]. The 2023 IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, USA, 2023: 27–29. doi: 10.1109/ISSCC42615.2023.10067666.
|
[22] |
JANG E K, KIM I J, LEE C A, et al. Analysis of residual stresses induced in the confined 3D NAND flash memory structure for process optimization[J]. IEEE Journal of the Electron Devices Society, 2022, 10: 104–108. doi: 10.1109/JEDS.2022.3140774.
|
[23] |
李治昊, 夏志良, 许高博, 等. 3D NAND中基于SEG高度失效模型的DPPM预测算法[J]. 电子产品可靠性与环境试验, 2020, 38(6): 58–61. doi: 10.3969/j.issn.1672-5468.2020.06.015.
LI Zhihao, XIA Zhiliang, XU Gaobo, et al. DPPM prediction algorithm based on SEG height failure model in 3D NAND[J]. Electronic Product Reliability and Environmental Testing, 2020, 38(6): 58–61. doi: 10.3969/j.issn.1672-5468.2020.06.015.
|
[24] |
OKUDUR O O, GONZALEZ M, VAN DEN BOSCH G, et al. Multi-scale modeling approach to assess and mitigate wafer warpage in 3-D NAND fabrication[C]. The 2021 IEEE International Interconnect Technology Conference (IITC), Kyoto, Japan, 2021. doi: 10.1109/IITC51362.2021.9537435.
|
[25] |
TIAN Zhiqiang, ZHANG Gang, HUANG Yuhua, et al. Process mechanics model and asymmetric residual stress analysis during 3-D NAND manufacturing[J]. IEEE Transactions on Electron Devices, 2025, 72(1): 193–198. doi: 10.1109/TED.2024.3496435.
|
[26] |
CHU Weishen, RASHIDI S E E, ZHANG Yanli, et al. An analytical model for thin film pattern-dependent asymmetric wafer warpage prediction[C]. The 2022 IEEE International Memory Workshop (IMW), Dresden, Germany, 2022: 1–4. doi: 10.1109/IMW52921.2022.9779248.
|
[27] |
OKUDUR O O, GONZALEZ M, VAN DEN BOSCH G, et al. Scaling-friendly approaches to minimize the magnitude and asymmetry of wafer warpage during 3-D NAND fabrication[J]. Microelectronics Reliability, 2023, 145: 114996. doi: 10.1016/j.microrel.2023.114996.
|