Citation: | HU Enbo, LIU Tao, LI Yubo. An Optimization Design Method for Zero-Correlation Zone Sequences Based on Newton’s Method[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250394 |
[1] |
PEZESHKI A, CALDERBANK A R, MORAN W, et al. Doppler resilient Golay complementary waveforms[J]. IEEE Transactions on Information Theory, 2008, 54(9): 4254–4266. doi: 10.1109/TIT.2008.928292.
|
[2] |
GIRNYK M A and PETERSSON S O. Efficient cell-specific beamforming for large antenna arrays[J]. IEEE Transactions on Communications, 2021, 69(12): 8429–8442. doi: 10.1109/TCOMM.2021.3113755.
|
[3] |
HUANG Wenjie, NAGHSH M M, LIN Ronghao, et al. Doppler sensitive discrete-phase sequence set design for MIMO radar[J]. IEEE Transactions on Aerospace and Electronic Systems, 2020, 56(6): 4209–4223. doi: 10.1109/TAES.2020.2988623.
|
[4] |
PETERSSON S O and GIRNYK M A. Energy-efficient design of broad beams for massive MIMO systems[J]. IEEE Transactions on Vehicular Technology, 2022, 71(11): 11772–11785. doi: 10.1109/TVT.2022.3192245.
|
[5] |
ZHOU Zhengchun, LIU Bing, SHEN Bingsheng, et al. Doppler-resilient waveform design in integrated MIMO radar-communication systems[J]. Science China Information Sciences, 2024, 67(1): 112301. doi: 10.1007/S11432-022-3733-2.
|
[6] |
王佳欢, 范平志, 时巧, 等. 一种具有多普勒容忍性的通感一体化波形设计[J]. 雷达学报, 2023, 12(2): 275–286. doi: 10.12000/JR22155.
WANG Jiahuan, FAN Pingzhi, SHI Qiao, et al. Doppler resilient integrated sensing and communication waveforms design[J]. Journal of Radars, 2023, 12(2): 275–286. doi: 10.12000/JR22155.
|
[7] |
LI Fengjie, JIANG Yi, DU Cheng, et al. Construction of Golay complementary matrices and its applications to MIMO omnidirectional transmission[J]. IEEE Transactions on Signal Processing, 2021, 69: 2100–2113. doi: 10.1109/TSP.2021.3067467.
|
[8] |
MEN Xinyu and LI Yubo. Omnidirectional precoding designs based on 2-D Golay complementary array pairs for massive MIMO systems with fully-connected and partially-connected structures[J]. IEEE Transactions on Communications, 2024, 72(5): 3019–3034. doi: 10.1109/TCOMM.2024.3351749.
|
[9] |
PENG Xiuping, WANG Yu, and LIU Zilong. New constructions of 2-D Golay complementary array sets with highly flexible array sizes for massive MIMO omni-directional transmission[J]. IEEE Signal Processing Letters, 2024, 31: 3129–3133. doi: 10.1109/LSP.2024.3490403.
|
[10] |
ZHAO Youqi, PAI Chengyu, HUANG Zhenming, et al. Two-dimensional Golay complementary array sets with arbitrary lengths for omnidirectional MIMO transmission[J]. IEEE Transactions on Communications, 2024, 72(2): 1135–1145. doi: 10.1109/TCOMM.2023.3326498.
|
[11] |
DAS S, BUDISIN S, MAJHI S, et al. A multiplier-free generator for polyphase complete complementary codes[J]. IEEE Transactions on Signal Processing, 2018, 66(5): 1184–1196. doi: 10.1109/TSP.2017.2780050.
|
[12] |
ARASU K T, DING Cunsheng, HELLESETH T, et al. Almost difference sets and their sequences with optimal autocorrelation[J]. IEEE Transactions on Information Theory, 2001, 47(7): 2934–2943. doi: 10.1109/18.959271.
|
[13] |
ADHIKARY A R, FENG Yanghe, ZHOU Zhengchun, et al. Asymptotically optimal and near-optimal aperiodic quasi-complementary sequence sets based on Florentine rectangles[J]. IEEE Transactions on Communications, 2022, 70(3): 1475–1485. doi: 10.1109/TCOMM.2021.3132364.
|
[14] |
SOLTANALIAN M and STOICA P. Computational design of sequences with good correlation properties[J]. IEEE Transactions on Signal Processing, 2012, 60(5): 2180–2193. doi: 10.1109/TSP.2012.2186134.
|
[15] |
SOLTANALIAN M, NAGHSH M M, and STOICA P. A fast algorithm for designing complementary sets of sequences[J]. Signal Processing, 2013, 93(7): 2096–2102. doi: 10.1016/j.sigpro.2013.02.008.
|
[16] |
STOICA P, HE Hao, and LI Jian. New algorithms for designing unimodular sequences with good correlation properties[J]. IEEE Transactions on Signal Processing, 2009, 57(4): 1415–1425. doi: 10.1109/TSP.2009.2012562.
|
[17] |
SONG Junxiao, BABU P, and PALOMAR D P. Sequence set design with good correlation properties via majorization-minimization[J]. IEEE Transactions on Signal Processing, 2016, 64(11): 2866–2879. doi: 10.1109/TSP.2016.2535312.
|
[18] |
GU Zhi, ADHIKARY A R, ZHOU Zhengchun, et al. A computational design of unimodular complementary and Z-complementary sets[C]. 2023 IEEE International Symposium on Information Theory (ISIT), Taipei, China, 2023: 1419–1424. doi: 10.1109/ISIT54713.2023.10206582.
|
[19] |
RAMEZANI P, GIRNYK M A, and BJÖRNSON E. On broad-beam reflection for dual-polarized RIS-assisted MIMO systems[J]. IEEE Transactions on Wireless Communications, 2025, 24(2): 1264–1277. doi: 10.1109/TWC.2024.3507182.
|
[20] |
BADEN J M, O'DONNELL B, and SCHMIEDER L. Multiobjective sequence design via gradient descent methods[J]. IEEE Transactions on Aerospace and Electronic Systems, 2018, 54(3): 1237–1252. doi: 10.1109/TAES.2017.2780538.
|
[21] |
ALAEE-KERAHROODI M, MODARRES-HASHEMI M, and NAGHSH M M. Designing sets of binary sequences for MIMO radar systems[J]. IEEE Transactions on Signal Processing, 2019, 67(13): 3347–3360. doi: 10.1109/TSP.2019.2914878.
|
[22] |
RAEI E, ALAEE-KERAHROODI M BABU P, et al. Generalized waveform design for sidelobe reduction in MIMO radar systems[J]. Signal Processing, 2023, 206: 108914. doi: 10.1016/J.SIGPRO.2022.108914.
|
[23] |
ZEBARDAST H, FARHANG M, and SHEIKHI A. Minimum PSL sequence set design for MIMO radars via manifold-based optimization[J]. IEEE Sensors Journal, 2024, 24(13): 20981–20988. doi: 10.1109/JSEN.2024.3398780.
|