Citation: | TAO Xinmin, XU Annan, SHI Lihang, LI Junxuan, GUO Xinyue, ZHANG Yanping. A Multi-class Local Distribution-based Weighted Oversampling Algorithm for Multi-class Imbalanced Datasets[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250381 |
[1] |
NGUYEN M N. A scoping review of deep learning approaches for lung cancer detection using chest radiographs and computed tomography scans[J]. Biomedical Engineering Advances, 2025, 9: 100138. doi: 10.1016/j.bea.2024.100138.
|
[2] |
LIANG Xiayu, GAO Ying, and XU Shanrong. ASE: Anomaly scoring based ensemble learning for highly imbalanced datasets[J]. Expert Systems with Applications, 2024, 238: 122049. doi: 10.1016/j.eswa.2023.122049.
|
[3] |
TENG Hu, WANG Cheng, YANG Qing, et al. Leveraging adversarial augmentation on imbalance data for online trading fraud detection[J]. IEEE Transactions on Computational Social Systems, 2024, 11(2): 1602–1614. doi: 10.1109/TCSS.2023.3240968.
|
[4] |
DOU Jun, WEI Guoliang, SONG Yan, et al. Switching triple-weight-SMOTE in empirical feature space for imbalanced and incomplete data[J]. IEEE Transactions on Automation Science and Engineering, 2024, 21(2): 1850–1866. doi: 10.1109/TASE.2023.3240759.
|
[5] |
张永清, 卢荣钊, 乔少杰, 等. 一种基于样本空间的类别不平衡数据采样方法[J]. 自动化学报, 2022, 48(10): 2549–2563. doi: 10.16383/j.aas.c200034.
ZHANG Yongqing, LU Rongzhao, QIAO Shaojie, et al. A sampling method of imbalanced data based on sample space[J]. Acta Automatica Sinica, 2022, 48(10): 2549–2563. doi: 10.16383/j.aas.c200034.
|
[6] |
YANG Yuxuan, KHORSHIDI H A, and AICKELIN U. A review on over-sampling techniques in classification of multi-class imbalanced datasets: Insights for medical problems[J]. Frontiers in Digital Health, 2024, 6: 1430245. doi: 10.3389/fdgth.2024.1430245.
|
[7] |
SÁEZ J A, KRAWCZYK B, and WOŹNIAK M. Analyzing the oversampling of different classes and types of examples in multi-class imbalanced datasets[J]. Pattern Recognition, 2016, 57: 164–178. doi: 10.1016/j.patcog.2016.03.012.
|
[8] |
ZHU Tuanfei, LIN Yaping, and LIU Yonghe. Synthetic minority oversampling technique for multiclass imbalance problems[J]. Pattern Recognition, 2017, 72: 327–340. doi: 10.1016/j.patcog.2017.07.024.
|
[9] |
ABDI L and HASHEMI S. To combat multi-class imbalanced problems by means of over-sampling techniques[J]. IEEE Transactions on Knowledge and Data Engineering, 2016, 28(1): 238–251. doi: 10.1109/TKDE.2015.2458858.
|
[10] |
KRAWCZYK B, KOZIARSKI M, and WOŹNIAK M. Radial-based oversampling for multiclass imbalanced data classification[J]. IEEE Transactions on Neural Networks and Learning Systems, 2020, 31(8): 2818–2831. doi: 10.1109/TNNLS.2019.2913673.
|
[11] |
KOZIARSKI M, WOŹNIAK M, and KRAWCZYK B. Combined Cleaning and Resampling algorithm for multi-class imbalanced data with label noise[J]. Knowledge-Based Systems, 2020, 204: 106223. doi: 10.1016/j.knosys.2020.106223.
|
[12] |
MONDAL P, ANSARI F, and DAS S. CCO: A cluster core-based oversampling technique for improved class-imbalanced learning[J]. IEEE Transactions on Emerging Topics in Computational Intelligence, 2025, 9(2): 1153–1165. doi: 10.1109/TETCI.2024.3407784.
|
[13] |
LI Shuxian, SONG Liyan, WU Xiaoyu, et al. Multi-class imbalance classification based on data distribution and adaptive weights[J]. IEEE Transactions on Knowledge and Data Engineering, 2024, 36(10): 5265–5279. doi: 10.1109/TKDE.2024.3384961.
|
[14] |
MA Tingting, LU Shuxia, and JIANG Chen. A membership-based resampling and cleaning algorithm for multi-class imbalanced overlapping data[J]. Expert Systems with Applications, 2024, 240: 122565. doi: 10.1016/j.eswa.2023.122565.
|
[15] |
DAI Qi, WANG Longhui, XU Kailong, et al. Class-overlap detection based on heterogeneous clustering ensemble for multi-class imbalance problem[J]. Expert Systems with Applications, 2024, 255: 124558. doi: 10.1016/j.eswa.2024.124558.
|
[16] |
TAO Xinmin, ZHANG Xiaohan, ZHENG Yujia, et al. A MeanShift-guided oversampling with self-adaptive sizes for imbalanced data classification[J]. Information Sciences, 2024, 672: 120699. doi: 10.1016/j.ins.2024.120699.
|
[17] |
RODRIGUEZ A and LAIO A. Clustering by fast search and find of density peaks[J]. Science, 2014, 344(6191): 1492–1496. doi: 10.1126/science.1242072.
|
[18] |
贺前华, 陈永强, 郑若伟, 等. 基于样本类不确定性抽样的端到端语音关键词检测训练方法[J]. 电子学报, 2024, 52(10): 3482–3492. doi: 10.12263/DZXB.20240048.
HE Qianhua, CHEN Yongqiang, ZHENG Ruowei, et al. End-to-end speech keyword spotting training method based on sample's class uncertainty[J]. Acta Electronica Sinica, 2024, 52(10): 3482–3492. doi: 10.12263/DZXB.20240048.
|
[19] |
SHARIEF F, IJAZ H, SHOJAFAR M, et al. Multi-class imbalanced data handling with concept drift in fog computing: A taxonomy, review, and future directions[J]. ACM Computing Surveys, 2025, 57(1): 16. doi: 10.1145/3689627.
|
[20] |
KEEL. KEEL dataset repository[EB/OL]. https://sci2s.ugr.es/keel/imbalanced.php. (查阅网上资料,未能确认标题信息,请确认) (查阅网上资料,未找到引用日期,请补充).
|
[21] |
Machine learning repository UCI. http://archive.ics.uci.edu/ml/datasets.html. (查阅网上资料,未找到本条文献信息,请确认).
|
[22] |
LI Lusi, HE Haibo, and LI Jie. Entropy-based sampling approaches for multi-class imbalanced problems[J]. IEEE Transactions on Knowledge and Data Engineering, 2020, 32(11): 2159–2170. doi: 10.1109/TKDE.2019.2913859.
|