| Citation: | GAO Wenchao, SUO Jianhua, ZHANG Ao. An Interpretable Vulnerability Detection Method Based on Graph and Code Slicing[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250363 |
| [1] |
GAO Qing, MA Sen, SHAO Sihao, et al. CoBOT: Static C/C++ bug detection in the presence of incomplete code[C]. Proceedings of the 26th Conference on Program Comprehension, Gothenburg, Sweden, 2018: 385–388. doi: 10.1145/3196321.3196367.
|
| [2] |
ZHANG Yu, HUO Wei, JIAN Kunpeng, et al. SRFuzzer: An automatic fuzzing framework for physical SOHO router devices to discover multi-type vulnerabilities[C]. The 35th Annual Computer Security Applications Conference, San Juan, USA, 2019: 544–556. doi: 10.1145/3359789.3359826.
|
| [3] |
LI Zhen, ZOU Deqing, XU Shouhuai, et al. VulDeePecker: A deep learning-based system for vulnerability detection[C]. The 25th Annual Network and Distributed Systems Security Symposium, San Diego, USA, 2018. doi: 10.14722/ndss.2018.23158.
|
| [4] |
ZOU Deqing, WANG Sujuan, XU Shouhuai, et al. μVulDeePecker: A deep learning-based system for multiclass vulnerability detection[J]. IEEE Transactions on Dependable and Secure Computing, 2021, 18(5): 2224–2236. doi: 10.1109/TDSC.2019.2942930.
|
| [5] |
LI Zhen, ZOU Deqing, XU Shouhuai, et al. SySeVR: A framework for using deep learning to detect software vulnerabilities[J]. IEEE Transactions on Dependable and Secure Computing, 2022, 19(4): 2244–2258. doi: 10.1109/TDSC.2021.3051525.
|
| [6] |
ZHOU Yaqin, LIU Shangqing, SIOW J, et al. Devign: Effective vulnerability identification by learning comprehensive program semantics via graph neural networks[C]. Proceedings of the 33rd International Conference on Neural Information Processing Systems, Vancouver, Canada, 2019: 915. doi: 10.5555/3454287.3455202.
|
| [7] |
FENG Qi, FENG Chendong, and HONG Weijiang. Graph neural network-based vulnerability predication[C]. 2020 IEEE International Conference on Software Maintenance and Evolution (ICSME), Adelaide, Australia, 2020: 800–801. doi: 10.1109/ICSME46990.2020.00096.
|
| [8] |
NGUYEN V A, NGUYEN D Q, NGUYEN V, et al. ReGVD: Revisiting graph neural networks for vulnerability detection[C]. Proceedings of the ACM/IEEE 44th International Conference on Software Engineering: Companion Proceedings, Pittsburgh, USA, 2022: 178–182. doi: 10.1145/3510454.3516865.
|
| [9] |
CHAKRABORTY S, KRISHNA R, DING Yangruibo, et al. Deep learning based vulnerability detection: Are we there yet?[J]. IEEE Transactions on Software Engineering, 2022, 48(9): 3280–3296. doi: 10.1109/TSE.2021.3087402.
|
| [10] |
ALI G M A and CHEN Hongsong. Contract-guardian: A bagging-based gradient boosting decision tree for detection vulnerability in smart contract[J]. Cluster Computing, 2025, 28(8): 528. doi: 10.1007/s10586-025-05230-2.
|
| [11] |
GUO Daya, ZHU Qihao, YANG Dejian, et al. DeepSeek-coder: When the large language model meets programming -- the rise of code intelligence[J]. arXiv preprint arXiv: 2401.14196, 2024. (不确定本条文献类型及格式是否正确, 请确认).
GUO Daya, ZHU Qihao, YANG Dejian, et al. DeepSeek-coder: When the large language model meets programming -- the rise of code intelligence[J]. arXiv preprint arXiv: 2401.14196, 2024. (不确定本条文献类型及格式是否正确, 请确认).
|
| [12] |
DeepSeek-AI. DeepSeek-coder-V2: Breaking the barrier of closed-source models in code intelligence[J]. arXiv preprint arXiv: 2406.11931, 2024. (不确定本条文献类型及格式是否正确, 请确认).
DeepSeek-AI. DeepSeek-coder-V2: Breaking the barrier of closed-source models in code intelligence[J]. arXiv preprint arXiv: 2406.11931, 2024. (不确定本条文献类型及格式是否正确, 请确认).
|
| [13] |
AGHAEI E, NIU Xi, SHADID W, et al. SecureBERT: A domain-specific language model for cybersecurity[C]. 18th International Conference on Security and Privacy in Communication Networks, Kansas, USA, 2022: 39–56. doi: 10.1007/978-3-031-25538-0_3. (查阅网上资料,未找到本条文献出版地信息,请确认).
|
| [14] |
SUN Yuqiang, WU Daoyuan, XUE Yue, et al. LLM4Vuln: A unified evaluation framework for decoupling and enhancing LLMs' vulnerability reasoning[J]. arXiv preprint arXiv: 2401.16185, 2024. (不确定本条文献类型及格式是否正确, 请确认).
SUN Yuqiang, WU Daoyuan, XUE Yue, et al. LLM4Vuln: A unified evaluation framework for decoupling and enhancing LLMs' vulnerability reasoning[J]. arXiv preprint arXiv: 2401.16185, 2024. (不确定本条文献类型及格式是否正确, 请确认).
|
| [15] |
FAR S M T and FEYZI F. Large language models for software vulnerability detection: A guide for researchers on models, methods, techniques, datasets, and metrics[J]. International Journal of Information Security, 2025, 24(2): 78. doi: 10.1007/s10207-025-00992-7.
|
| [16] |
ZHOU Xin, CAO Sicong, SUN Xiaobing, et al. Large language model for vulnerability detection and repair: Literature review and the road ahead[J]. ACM Transactions on Software Engineering and Methodology, 2025, 34(5): 145. doi: 10.1145/3708522.
|
| [17] |
YING R, BOURGEOIS D, YOU Jiaxuan, et al. GNNExplainer: Generating explanations for graph neural networks[C]. Proceedings of the 33rd International Conference on Neural Information Processing Systems, Vancouver, Canada, 2019: 829. doi: 10.5555/3454287.3455116.
|
| [18] |
FAN Jiahao, LI Yi, WANG Shaohua, et al. A C/C++ code vulnerability dataset with code changes and CVE summaries[C]. Proceedings of the 17th International Conference on Mining Software Repositories, Seoul, Korea, 2020: 508–512. doi: 10.1145/3379597.3387501.
|
| [19] |
D'ABRUZZO PEREIRA J and VIEIRA M. On the use of open-source C/C++ static analysis tools in large projects[C]. 2020 16th European Dependable Computing Conference (EDCC), Munich, Germany, 2020: 97–102. doi: 10.1109/EDCC51268.2020.00025.
|
| [20] |
FERSCHKE O, GUREVYCH I, and RITTBERGER M. FlawFinder: A modular system for predicting quality flaws in wikipedia[C]. CLEF 2012 Evaluation Labs and Workshop, Online Working Notes, Rome, Italy, 2012: 1178.
|
| [21] |
GRAVES A. Long short-term memory[M]. GRAVES A. Supervised Sequence Labelling with Recurrent Neural Networks. Berlin: Springer, 2012: 37–45. doi: 10.1007/978-3-642-24797-2_4.
|
| [22] |
CHEN Yahui. Convolutional neural network for sentence classification[D]. [Master dissertation], University of Waterloo, 2015.
|
| [23] |
LIU Yinhan, OTT M, GOYAL N, et al. RoBERTa: A robustly optimized BERT pretraining approach[C]. International Conference on Learning Representations, Addis Ababa, Ethiopia, 2020.
|
| [24] |
FENG Zhangyin, GUO Daya, TANG Duyu, et al. CodeBERT: A pre-trained model for programming and natural languages[C]. Findings of the Association for Computational Linguistics: EMNLP 2020, 2020: 1536–1547. doi: 10.18653/v1/2020.findings-emnlp.139. (查阅网上资料,未找到本条文献出版地信息,请确认).
|
| [25] |
ZENG Ciling, ZHOU Bo, DONG Huoyuan, et al. A general source code vulnerability detection method via ensemble of graph neural networks[C]. The 6th International Conference on Frontiers in Cyber Security, Chengdu, China, 2023: 560–574. doi: 10.1007/978-981-99-9331-4_37.
|