Citation: | XU Mengfan, ZHANG Yuejun, LIU Tianxiang, PAN Yu. Bit-configurable Physical Unclonable Function Circuit Based on Self-detection and Repair Method[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250359 |
[1] |
AL-MEER A and AL-KUWARI S. Physical Unclonable Functions (PUF) for IoT devices[J]. ACM Computing Surveys, 2023, 55(14s): 314. doi: 10.1145/3591464.
|
[2] |
XU Chongyao, ZHANG Litao, MAK P I, et al. Fully symmetrical obfuscated interconnection and weak-PUF-assisted challenge obfuscation strong PUFs against machine-learning modeling attacks[J]. IEEE Transactions on Information Forensics and Security, 2024, 19: 3927–3942. doi: 10.1109/tifs.2024.3372801.
|
[3] |
夏卓群, 苏潮, 徐梓桑, 等. 基于物理不可克隆函数的轻量级可证明安全车联网认证协议[J]. 电子与信息学报, 2024, 46(9): 3788–3796. doi: 10.11999/jeit240141.
XIA Zhuoqun, SU Chao, XU Zisang, et al. A lightweight and provably secure authentication protocol for internet of vehicles using physical unclonable function[J]. Journal of Electronics & Information Technology, 2024, 46(9): 3788–3796. doi: 10.11999/jeit240141.
|
[4] |
ZHOU Ziyu, LI Gang, ZHANG Yuejun, et al. A strong PUF-based security protocol to protect AI model parameters against privacy information leakage[J]. IEEE Internet of Things Journal, 2025, 12(12): 20815–20827. doi: 10.1109/jiot.2025.3544555.
|
[5] |
CHIU Y C, KHWA W S, YANG C S, et al. A CMOS-integrated spintronic compute-in-memory macro for secure AI edge devices[J]. Nature Electronics, 2023, 6(7): 534–543. doi: 10.1038/s41928-023-00994-0.
|
[6] |
WANG Ziyu, WU Yuting, PARK Y, et al. Safe, secure and trustworthy compute-in-memory accelerators[J]. Nature Electronics, 2024, 7(12): 1086–1097. doi: 10.1038/s41928-024-01312-y.
|
[7] |
SHAO Hanyong, FU Boyi, YANG Jinghao, et al. IMCE: An in-memory computing and encrypting hardware architecture for robust edge security[C]. 2024 Design, Automation & Test in Europe Conference & Exhibition (DATE), Valencia, Spain, 2024: 1–6. doi: 10.23919/DATE58400.2024.10546703.
|
[8] |
HUANG Shanshi, JIANG Hongwu, PENG Xiaochen, et al. Secure XOR-CIM engine: Compute-in-memory SRAM architecture with embedded XOR encryption[J]. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2021, 29(12): 2027–2039. doi: 10.1109/tvlsi.2021.3120296.
|
[9] |
LEE J, KIM M, JEONG M, et al. A 20F2/bit current-integration-based differential nand-structured PUF for stable and V/T variation-tolerant low-cost IoT security[J]. IEEE Journal of Solid-State Circuits, 2022, 57(10): 2957–2968. doi: 10.1109/jssc.2022.3192903.
|
[10] |
LIU Kunyang, CHEN Xinpeng, PU Hongliang, et al. A 0.5-V hybrid SRAM physically unclonable function using hot carrier injection burn-in for stability reinforcement[J]. IEEE Journal of Solid-State Circuits, 2021, 56(7): 2193–2204. doi: 10.1109/jssc.2020.3035207.
|
[11] |
KARPINSKYY B, LEE Y, CHOI Y, et al. 8.7 physically unclonable function for secure key generation with a key error rate of 2E-38 in 45nm smart-card chips[C]. 2016 IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, USA, 2016: 158–160. doi: 10.1109/isscc.2016.7417955.
|
[12] |
TANEJA S and ALIOTO M. PUF architecture with run-time adaptation for resilient and energy-efficient key generation via sensor fusion[J]. IEEE Journal of Solid-State Circuits, 2021, 56(7): 2182–2192. doi: 10.1109/jssc.2021.3050959.
|
[13] |
CHUANG K H, BURY E, DEGRAEVE R, et al. A physically unclonable function using soft oxide breakdown featuring 0% native BER and 51.8 fJ/bit in 40-nm CMOS[J]. IEEE Journal of Solid-State Circuits, 2019, 54(10): 2765–2776. doi: 10.1109/jssc.2019.2920714.
|
[14] |
SARAZA-CANFLANCA P, FODOR F, DIAZ-FORTUNY J, et al. Unveiling the vulnerability of oxide-breakdown-based PUF[J]. IEEE Electron Device Letters, 2024, 45(5): 750–753. doi: 10.1109/led.2024.3369860.
|
[15] |
HE Yan, LI Dai, YU Zhanghao, et al. ASCH-PUF: A “Zero” bit error rate CMOS physically unclonable function with dual-mode low-cost stabilization[J]. IEEE Journal of Solid-State Circuits, 2023, 58(7): 2087–2097. doi: 10.1109/jssc.2022.3233373.
|
[16] |
LIU Kunyang, MIN Yue, YANG Xuan, et al. A 373-F2 0.21%-native-BER EE SRAM physically unclonable function with 2-D power-gated bit cells and VSS bias-based dark-bit detection[J]. IEEE Journal of Solid-State Circuits, 2020, 55(6): 1719–1732. doi: 10.1109/jssc.2019.2963002.
|
[17] |
SHIFMAN Y, MILLER A, KEREN O, et al. An SRAM-based PUF with a capacitive digital preselection for a 1E-9 key error probability[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2020, 67(12): 4855–4868. doi: 10.1109/tcsi.2020.2996772.
|
[18] |
VATALARO M, DE ROSE R, LANUZZA M, et al. Static CMOS physically unclonable function based on 4T voltage divider with 0.6%–1.5% bit instability at 0.4–1.8 V operation in 180 nm[J]. IEEE Journal of Solid-State Circuits, 2022, 57(8): 2509–2520. doi: 10.1109/jssc.2022.3151229.
|
[19] |
ZHANG Haoyi, SONG Jiahao, LUO Haoyang, et al. A 266F2 ultra stable differential NOR-structured physically unclonable function with <6×10–9 bit error rate through efficient redundancy strategy[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2024, 71(12): 4979–4983. doi: 10.1109/tcsii.2024.3433543.
|
[20] |
SATPATHY S, MATHEW S K, SURESH V, et al. A 4-fJ/b delay-hardened physically unclonable function circuit with selective bit destabilization in 14-nm trigate CMOS[J]. IEEE Journal of Solid-State Circuits, 2017, 52(4): 940–949. doi: 10.1109/jssc.2016.2636859.
|