Citation: | LAN Zeru, QIU Pengfei, WANG Chunlu, ZHAO Yaxuan, JIN Yu, ZHANG Zhihao, WANG Dongsheng. A Survey of Processor Hardware Vulnerability[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250357 |
[1] |
KOCHER P, HORN J, FOGH A, et al. Spectre attacks: Exploiting speculative execution[C]. The 2019 IEEE Symposium on Security and Privacy, San Francisco, USA, 2019: 1–19. doi: 10.1109/SP.2019.00002.
|
[2] |
LIPP M, SCHWARZ M, GRUSS D, et al. Meltdown: Reading kernel memory from user space[C]. The 27th USENIX Conference on Security Symposium, Baltimore, USA, 2018: 973–990.
|
[3] |
王泉成, 唐明. 微架构安全漏洞攻击技术综述[J]. 密码学报, 2024, 11(6): 1199–1232. doi: 10.13868/j.cnki.jcr.000730.
WANG Quancheng and TANG Ming. Survey of attack techniques for microarchitecture security vulnerabilities[J]. Journal of Cryptologic Research, 2024, 11(6): 1199–1232. doi: 10.13868/j.cnki.jcr.000730.
|
[4] |
ZHANG Ruiyi, GERLACH L, WEBER D, et al. CacheWarp: Software-based fault injection using selective state reset[C]. The 33rd USENIX Conference on Security Symposium, Philadelphia, USA, 2024: 1135–1151.
|
[5] |
YAROM Y and FALKNER K. FLUSH+RELOAD: A high resolution, low noise, L3 cache side-channel attack[C]. Proceedings of the 23rd USENIX Conference on Security Symposium, San Diego, USA, 2014: 719–732.
|
[6] |
GRUSS D, MAURICE C, WAGNER K, et al. Flush+Flush: A fast and stealthy cache attack[C]. The 13th International Conference on Detection of Intrusions and Malware, and Vulnerability Assessment, San Sebastián, Spain, 2016: 279–299. doi: 10.1007/978-3-319-40667-1_14.
|
[7] |
TROMER E, OSVIK D A, and SHAMIR A. Efficient cache attacks on AES, and countermeasures[J]. Journal of Cryptology, 2010, 23(1): 37–71. doi: 10.1007/s00145-009-9049-y.
|
[8] |
LIU Fangfei, YAROM Y, GE Qian, et al. Last-level cache side-channel attacks are practical[C]. The 2015 IEEE Symposium on Security and Privacy, San Jose, USA, 2015: 605–622. doi: 10.1109/SP.2015.43.
|
[9] |
LIPP M, GRUSS D, SPREITZER R, et al. ARMageddon: Cache attacks on mobile devices[C]. The 25th USENIX Conference on Security Symposium, Austin, USA, 2016: 549–564.
|
[10] |
DISSELKOEN C, KOHLBRENNER D, PORTER L, et al. Prime+abort: A timer-free high-precision L3 cache attack using intel TSX[C]. The 26th USENIX Conference on Security Symposium, Vancouver, Canada, 2017: 51–67.
|
[11] |
WANG Alan, CHEN Boru, WANG Yingchen, et al. Peek-a-walk: Leaking secrets via page walk side channels[C]. The 2025 IEEE Symposium on Security and Privacy, San Francisco, USA, 2025: 3534–3548. doi: 10.1109/SP61157.2025.00023.
|
[12] |
GRAS B, RAZAVI K, BOS H, et al. Translation leak-aside buffer: Defeating cache side-channel protections with TLB attacks[C]. The 27th USENIX Conference on Security Symposium, Baltimore, USA, 2018: 955–972.
|
[13] |
QIU Pengfei, GAO Qiang, LIU Chang, et al. PMU-spill: A new side channel for transient execution attacks[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2023, 70(12): 5048–5059. doi: 10.1109/TCSI.2023.3298913.
|
[14] |
QIU Pengfei, GAO Qiang, WANG Dongsheng, et al. PMU-leaker: Performance monitor unit-based realization of cache side-channel attacks[C]. The 28th Asia and South Pacific Design Automation Conference, Tokyo, Japan, 2023: 1–6.
|
[15] |
KIM T and SHIN Y. ThermalBleed: A practical thermal side-channel attack[J]. IEEE Access, 2022, 10: 25718–25731. doi: 10.1109/ACCESS.2022.3156596.
|
[16] |
KOGLER A, JUFFINGER J, GINER L, et al. Collide+Power: Leaking inaccessible data with software-based power side channels[C]. The 32nd USENIX Conference on Security Symposium, Anaheim, USA, 2023: 7285–7302.
|
[17] |
刘畅, 杨毅, 李昊儒, 等. 处理器分支预测攻击研究综述[J]. 计算机学报, 2022, 45(12): 2475–2509. doi: 10.11897/SP.J.1016.2022.02475.
LIU Chang, YANG Yi, LI Haoru, et al. A survey of branch prediction attacks on modern processors[J]. Chinese Journal of Computers, 2022, 45(12): 2475–2509. doi: 10.11897/SP.J.1016.2022.02475.
|
[18] |
CANELLA C, VAN BULCK J, SCHWARZ M, et al. A systematic evaluation of transient execution attacks and defenses[C]. The 28th USENIX Conference on Security Symposium, Santa Clara, USA, 2019: 249–266.
|
[19] |
KORUYEH E M, KHASAWNEH K N, SONG Chengyu, et al. Spectre returns! Speculation attacks using the return stack buffer[J]. IEEE Design & Test, 2024, 41(2): 47–55. doi: 10.1109/MDAT.2024.3352537.
|
[20] |
KIM J, CHUANG J, GENKIN D, et al. FLOP: Breaking the apple M3 CPU via false load output predictions[C]. The 34th USENIX Conference on Security Symposium, Seattle, USA, 2025.
|
[21] |
KIM J, GENKIN D, and YAROM Y. SLAP: Data speculation attacks via load address prediction on apple silicon[C]. 2025 IEEE Symposium on Security and Privacy, San Francisco, USA, 2025: 3549–3566. doi: 10.1109/SP61157.2025.00098.
|
[22] |
TANG A, SETHUMADHAVAN S, and STOLFO S. CLKSCREW: Exposing the perils of security-oblivious energy management[C]. The 26th USENIX Conference on Security Symposium, Vancouver, Canada, 2017: 1057–1074.
|
[23] |
QIU Pengfei, WANG Dongsheng, LYU Yongqiang, et al. Voltjockey: Breaching TrustZone by software-controlled voltage manipulation over multi-core frequencies[C]. The 2019 ACM SIGSAC Conference on Computer and Communications Security, London, UK, 2019: 195–209. doi: 10.1145/3319535.3354201.
|
[24] |
KENJAR Z, FRASSETTO T, GENS D, et al. V0LTpwn: Attacking x86 processor integrity from software[C]. The 29th USENIX Conference on Security Symposium, 2020: 1445–1461.
|
[25] |
MURDOCK K, OSWALD D, GARCIA F D, et al. Plundervolt: Software-based fault injection attacks against intel SGX[C]. 2020 IEEE Symposium on Security and Privacy, San Francisco, USA, 2020: 1466–1482. doi: 10.1109/SP40000.2020.00057.
|
[26] |
DENG Shuwen, XIONG Wenjie, and SZEFER J. Analysis of secure caches using a three-step model for timing-based attacks[J]. Journal of Hardware and Systems Security, 2019, 3(4): 397–425. doi: 10.1007/s41635-019-00075-9.
|
[27] |
XIONG Wenjie and SZEFER J. Survey of transient execution attacks and their mitigations[J]. ACM Computing Surveys, 2022, 54(3): 54. doi: 10.1145/3442479.
|
[28] |
RAUSCHER F, FIEDLER C, KOGLER A, et al. A systematic evaluation of novel and existing cache side channels[C]. The 32nd Annual Network and Distributed System Security Symposium, San Diego, USA, 2025.
|
[29] |
DENG Shuwen, XIONG Wenjie, and SZEFER J. A benchmark suite for evaluating caches' vulnerability to timing attacks[C]. The 25th International Conference on Architectural Support for Programming Languages and Operating Systems, Lausanne, Switzerland, 2020: 683–697. doi: 10.1145/3373376.3378510.
|
[30] |
ALDAYA A C, BRUMLEY B B, UL HASSAN S, et al. Port contention for fun and profit[C]. The 2019 IEEE Symposium on Security and Privacy, San Francisco, USA, 2019: 870–887. doi: 10.1109/SP.2019.00066.
|
[31] |
BHATTACHARYYA A, SANDULESCU A, NEUGSCHWANDTNER M, et al. SMoTherSpectre: Exploiting speculative execution through port contention[C]. The 2019 ACM SIGSAC Conference on Computer and Communications Security, London, UK, 2019: 785–800. doi: 10.1145/3319535.3363194.
|
[32] |
LIU Chang, WANG Dongsheng, LYU Yongqiang, et al. Uncovering and exploiting AMD speculative memory access predictors for fun and profit[C]. 2024 IEEE International Symposium on High-Performance Computer Architecture, Edinburgh, UK, 2024: 31–45. doi: 10.1109/HPCA57654.2024.00014.
|
[33] |
尹嘉伟, 李孟豪, 霍玮. 处理器微体系结构安全研究综述[J]. 信息安全学报, 2022, 7(4): 17–31. doi: 10.19363/J.cnki.cn10-1380/tn.2022.07.02.
YIN Jiawei, LI Menghao, and HUO Wei. Survey on security researches of processor's microarchitecture[J]. Journal of Cyber Security, 2022, 7(4): 17–31. doi: 10.19363/J.cnki.cn10-1380/tn.2022.07.02.
|
[34] |
BRIONGOS S, MALAGÓN P, MOYA J M, et al. RELOAD+REFRESH: Abusing cache replacement policies to perform stealthy cache attacks[C]. The 29th USENIX Conference on Security Symposium, Berkeley, USA, 2020: 1967–1984.
|
[35] |
XIONG Wenjie and SZEFER J. Leaking information through cache LRU states[C]. 2020 IEEE International Symposium on High Performance Computer Architecture, San Diego, USA, 2020: 139–152. doi: 10.1109/HPCA47549.2020.00021.
|
[36] |
CUI Yujie, YANG Chun, and CHENG Xu. Abusing cache line dirty states to leak information in commercial processors[C]. 2022 IEEE International Symposium on High-Performance Computer Architecture, Seoul, Korea, Republic of, 2022: 82–97. doi: 10.1109/HPCA53966.2022.00015.
|
[37] |
YAO Fan, DOROSLOVACKI M, and VENKATARAMANI G. Are coherence protocol states vulnerable to information leakage?[C]. 2018 IEEE International Symposium on High Performance Computer Architecture, Vienna, Austria, 2018: 168–179. doi: 10.1109/HPCA.2018.00024.
|
[38] |
XU Tianhong, DING A A, and FEI Yunsi. EXAM: Exploiting exclusive system-level cache in apple M-series SoCs for enhanced cache occupancy attacks[EB/OL]. https://arxiv.org/abs/2504.13385, 2025.
|
[39] |
HERTOGH M, WIEBING S, and GIUFFRIDA C. Leaky address masking: Exploiting unmasked spectre gadgets with noncanonical address translation[C]. The 2024 IEEE Symposium on Security and Privacy, San Francisco, USA, 2024: 3773–3788. doi: 10.1109/SP54263.2024.00158.
|
[40] |
LIPP M, KOGLER A, OSWALD D, et al. PLATYPUS: Software-based power side-channel attacks on x86[C]. 2021 IEEE Symposium on Security and Privacy, San Francisco, USA, 2021: 355–371. doi: 10.1109/SP40001.2021.00063.
|
[41] |
WAN Junpeng, BI Yanxiang, ZHOU Zhe, et al. MeshUp: Stateless cache side-channel attack on CPU mesh[C]. 2022 IEEE Symposium on Security and Privacy, San Francisco, USA, 2022: 1506–1524. doi: 10.1109/SP46214.2022.9833794.
|
[42] |
SIDE M, YAO Fan, and ZHANG Zhenkai. LockedDown: Exploiting contention on Host-GPU PCIe bus for fun and profit[C]. 2022 IEEE 7th European Symposium on Security and Privacy, Genoa, Italy, 2022: 270–285. doi: 10.1109/EuroSP53844.2022.00025.
|
[43] |
YAROM Y, GENKIN D, and HENINGER N. CacheBleed: A timing attack on OpenSSL constant-time RSA[J]. Journal of Cryptographic Engineering, 2017, 7(2): 99–112. doi: 10.1007/s13389-017-0152-y.
|
[44] |
MOGHIMI A, WICHELMANN J, EISENBARTH T, et al. MemJam: A false dependency attack against constant-time crypto implementations[J]. International Journal of Parallel Programming, 2019, 47(4): 538–570. doi: 10.1007/s10766-018-0611-9.
|
[45] |
CHEN Yun, PEI Lingfeng, and CARLSON T E. AfterImage: Leaking control flow data and tracking load operations via the hardware prefetcher[C]. The 28th ACM International Conference on Architectural Support for Programming Languages and Operating Systems, Vancouver, Canada, 2023: 16–32. doi: 10.1145/3575693.3575719.
|
[46] |
CHEN Yun, HAJIABADI A, PEI Lingfeng, et al. PREFETCHX: Cross-core cache-agnostic prefetcher-based side-channel attacks[C]. 2024 IEEE International Symposium on High-Performance Computer Architecture, Edinburgh, UK, 2024: 395–408. doi: 10.1109/HPCA57654.2024.00037.
|
[47] |
ZHU Yongye, CHEN Boru, ZHAO Z N, et al. Controlled preemption: Amplifying side-channel attacks from userspace[C]. The 30th ACM International Conference on Architectural Support for Programming Languages and Operating Systems, Rotterdam, The Netherlands, 2025: 162–177. doi: 10.1145/3676641.3715985.
|
[48] |
ZHANG Xin, ZHANG Zhi, SHEN Qingni, et al. SegScope: Probing fine-grained interrupts via architectural footprints[C]. 2024 IEEE International Symposium on High-Performance Computer Architecture, Edinburgh, UK, 2024: 424–438. doi: 10.1109/HPCA57654.2024.00039.
|
[49] |
VAN BULCK J, MINKIN M, WEISSE O, et al. Foreshadow: Extracting the keys to the intel SGX kingdom with transient out-of-order execution[C]. The 27th USENIX Conference on Security Symposium, Baltimore, USA, 2018: 991–1008.
|
[50] |
BRUNELLA M S, BIANCHI G, TURCO S, et al. Foreshadow-VMM: Feasibility and network perspective[C]. 2019 IEEE Conference on Network Softwarization, Paris, France, 2019: 257–259. doi: 10.1109/NETSOFT.2019.8806712.
|
[51] |
VAN SCHAIK S, MILBURN A, ÖSTERLUND S, et al. RIDL: Rogue in-flight data load[C]. The 2019 IEEE Symposium on Security and Privacy, San Francisco, USA, 2019: 88–105. doi: 10.1109/SP.2019.00087.
|
[52] |
SCHWARZ M, LIPP M, MOGHIMI D, et al. ZombieLoad: Cross-privilege-boundary data sampling[C]. The 2019 ACM SIGSAC Conference on Computer and Communications Security, London, UK, 2019: 753–768. doi: 10.1145/3319535.3354252.
|
[53] |
CHEN Yun, HAJIABADI A, and CARLSON T E. GADGETSPINNER: A new transient execution primitive using the loop stream detector[C]. 2024 IEEE International Symposium on High-Performance Computer Architecture, Edinburgh, UK, 2024: 15–30. doi: 10.1109/HPCA57654.2024.00013.
|
[54] |
ZHANG Ruiyi, KIM T, WEBER D, et al. (M)WAIT for it: Bridging the gap between microarchitectural and architectural side channels[C]. The 32nd USENIX Conference on Security Symposium, Anaheim, USA, 2023: 7267–7284.
|
[55] |
CHOI H, KIM S, and SHIN S. AVX timing side-channel attacks against address space layout randomization[C]. 2023 60th ACM/IEEE Design Automation Conference, San Francisco, USA, 2023: 1–6. doi: 10.1109/DAC56929.2023.10247741.
|
[56] |
GUO Yanan, ZIGERELLI A, ZHANG Youtao, et al. Adversarial prefetch: New cross-core cache side channel attacks[C]. 2022 IEEE Symposium on Security and Privacy, San Francisco, USA, 2022: 1458–1473. doi: 10.1109/SP46214.2022.9833692.
|
[57] |
DI DIO A, HERTOGH M, and GIUFFRIDA C. Half spectre, full exploit: Hardening rowhammer attacks with half-spectre gadgets[C]. 2025 IEEE Symposium on Security and Privacy, San Francisco, USA, 2025: 3583–3598. doi: 10.1109/SP61157.2025.00207.
|
[58] |
TOBAH Y, KWONG A, KANG I, et al. Go go gadget hammer: Flipping nested pointers for arbitrary data leakage[C]. The 33rd USENIX Conference on Security Symposium, Philadelphia, USA, 2024: 1635–1650.
|
[59] |
CANELLA C, GENKIN D, GINER L, et al. Fallout: Leaking data on meltdown-resistant CPUs[C]. The 2019 ACM SIGSAC Conference on Computer and Communications Security, London, UK, 2019: 769–784. doi: 10.1145/3319535.3363219.
|
[60] |
ORMANDY T. Zenbleed[EB/OL]. https://cmpxchg8b.com/zenbleed.html, 2023.
|
[61] |
RAGAB H, MILBURN A, RAZAVI K, et al. CrossTalk: Speculative data leaks across cores are real[C]. The 2021 IEEE Symposium on Security and Privacy, San Francisco, USA, 2021: 1852–1867. doi: 10.1109/SP40001.2021.00020.
|
[62] |
ZHANG Jiliang, CHEN Congcong, CUI Jinhua, et al. Timing side-channel attacks and countermeasures in CPU microarchitectures[J]. ACM Computing Surveys, 2024, 56(7): 178. doi: 10.1145/3645109.
|
[63] |
TRUJILLO D, WIKNER J, and RAZAVI K. INCEPTION: Exposing new attack surfaces with training in transient execution[C]. The 32nd USENIX Conference on Security Symposium, Anaheim, USA, 2023: 7303–7320.
|