Citation: | ZHANG Yuxian, YANG Zijiang, HUANG Zhixiang, FENG Xiaoli, FENG Naixing, YANG Lixia. Electromagnetic Finite-Difference Time-Domain Scattering Analysis of Multilayered/Porous Materials in Specific Geometric Meshing[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250348 |
[1] |
WEI Yiwen and GAO Mengyan. A model for calculating electromagnetic scattering from target in evaporation duct[J]. IEEE Antennas and Wireless Propagation Letters, 2022, 21(12): 2312–2316. doi: 10.1109/LAWP.2022.3190013.
|
[2] |
于继军, 盛新庆. 地下三维目标电磁散射的矩量法计算[J]. 电子与信息学报, 2006, 28(5): 950–954.
YU Jijun and SHENG Xinqing. Scattering from 3-D targets in the subsurface using MOM[J]. Journal of Electronics & Information Technology, 2006, 28(5): 950–954.
|
[3] |
ZHANG Daisheng, LIAO Wenxuan, SUN Xiaojun, et al. Study on the electromagnetic scattering characteristics of time-varying dusty plasma target in the BGK collision model-TM case[J]. IEEE Transactions on Plasma Science, 2025, 53(1): 116–121. doi: 10.1109/TPS.2024.3520713.
|
[4] |
ZHOU J and HONG Wei. Construction of the absorbing boundary conditions for the FDTD method with transfer functions[J]. IEEE Transactions on Microwave Theory and Techniques, 1998, 46(11): 1807–1809. doi: 10.1109/22.734591.
|
[5] |
DENG Langran, WANG Yuhui, TIAN Chengyi, et al. A symmetric FDTD subgridding method with guaranteed stability and arbitrary grid ratio[J]. IEEE Transactions on Antennas and Propagation, 2023, 71(12): 9207–9221. doi: 10.1109/TAP.2023.3284488.
|
[6] |
CHENG Yu, LI Lilin, WANG Xianghua, et al. A provably stable FDTD subgridding technique for transient electromagnetic analysis[C]. 2022 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting, Denver, USA, 2022: 669–670. doi: 10.1109/AP-S/USNC-URSI47032.2022.9886485.
|
[7] |
何欣波, 魏兵. 基于悬挂变量的显式无条件稳定时域有限差分亚网格算法[J]. 物理学报, 2024, 73(8): 080202. doi: 10.7498/aps.73.20231813.
HE Xinbo and WEI Bing. Explicit and unconditionally stable finite-difference time-domain subgridding algorithm based on hanging variables[J]. Acta Physica Sinica, 2024, 73(8): 080202. doi: 10.7498/aps.73.20231813.
|
[8] |
阎渊, 柴伦炜, 黄勇, 等. 基于时域有限差分法的探地雷达数值模拟及在隧道超前地质预报中的应用[J]. 世界地质, 2024, 43(4): 566–573. doi: 10.3969/j.issn.1004-5589.2024.04.010.
YAN Yuan, CHAI Lunwei, HUANG Yong, et al. Numerical simulation of GPR based on finite-difference time-domain method and its application in tunnel geological forecasting[J]. World Geology, 2024, 43(4): 566–573. doi: 10.3969/j.issn.1004-5589.2024.04.010.
|
[9] |
冯健, 闫晨晨, 方明. 面中心立方体网格FDTD方法中亚网格技术研究[J/OL]. 微波学报, https://link.cnki.net/urlid/32.1493.TN.20240522.1130.004, 2024.
FENG Jian, YAN Chenchen, and FANG Ming. Research on subgrid technique of FDTD method for face-centered cube grid[J/OL]. Journal of Microwaves, https://link.cnki.net/urlid/32.1493.TN.20240522.1130.004, 2024.
|
[10] |
丁丽, 何华港, 王韬, 等. 基于同心方形网格插值处理的柱面SAR成像算法[J]. 电子与信息学报, 2024, 46(1): 249–257. doi: 10.11999/JEIT221507.
DING Li, HE Huagang, WANG Tao, et al. Cylindrical SAR imaging based on a concentric-square-grid interpolation method[J]. Journal of Electronics & Information Technology, 2024, 46(1): 249–257. doi: 10.11999/JEIT221507.
|
[11] |
CAKIR G, CAKIR M, and SEVGI L. An FDTD-based parallel virtual tool for RCS calculations of complex targets[J]. IEEE Antennas and Propagation Magazine, 2014, 56(5): 74–90. doi: 10.1109/MAP.2014.6971919.
|
[12] |
ZHANG Yuxian, FENG Naixing, ZHU Jinfeng, et al. Z-transform-based FDTD implementations of biaxial anisotropy for radar target scattering problems[J]. Remote Sensing, 2022, 14(10): 2397. doi: 10.3390/rs14102397.
|
[13] |
范凯航, 陈娟, 牟春晖. 高功率微波天线电磁仿真方法研究进展[J]. 电波科学学报, 2024, 39(5): 836–845. doi: 10.12265/j.cjors.2024140.
FAN Kaihang, CHEN Juan, and MOU Chunhui. Research progress on electromagnetic simulation methods for high-power microwave antennas[J]. Chinese Journal of Radio Science, 2024, 39(5): 836–845. doi: 10.12265/j.cjors.2024140.
|
[14] |
YU Hongxin, LIAO Cheng, FENG Ju, et al. A novel 3-D hybrid approach for simulating electromagnetic scattering from electrically large targets in ducting maritime environments[J]. IEEE Antennas and Wireless Propagation Letters, 2024, 23(12): 4528–4532. doi: 10.1109/LAWP.2024.3454379.
|
[15] |
KUO C M and KUO C W. A novel FDTD time-stepping scheme to calculate RCS of curved conducting objects using adaptively adjusted time steps[J]. IEEE Transactions on Antennas and Propagation, 2013, 61(10): 5127–5134. doi: 10.1109/TAP.2013.2273211.
|
[16] |
徐利军, 刘少斌, 袁乃昌. 用FDTD计算各向异性磁化等离子体涂敷二维目标的RCS[J]. 物理学报, 2005, 54(10): 4789–4793. doi: 10.7498/aps.54.4789.
XU Lijun, LIU Shaobin, and YUAN Naichang. RCS of 2-D target loaded with anisotropic magnetized plasma computed by FDTD[J]. Acta Physica Sinica, 2005, 54(10): 4789–4793. doi: 10.7498/aps.54.4789.
|
[17] |
冯乃星, 张玉贤, 郑宏兴, 等. 基于矩阵指数法的双线性Z变换PML模拟FDTD地下探测与成像[J]. 电波科学学报, 2021, 36(4): 579–588. doi: 10.13443/j.cjors.2020051201.
FENG Naixing, ZHANG Yuxian, ZHENG Hongxing, et al. Compact BZT-ME-PML for modeling FDTD subsurface sensing and imaging[J]. Chinese Journal of Radio Science, 2021, 36(4): 579–588. doi: 10.13443/j.cjors.2020051201.
|
[18] |
SAHOO N K, PARIDA R K, and PANDA D C. A case study on using CPML and PML boundary conditions in FDTD for RCS calculation[C]. 2018 International Conference on Applied Electromagnetics, Signal Processing and Communication, Bhubaneswar, India, 2018: 1–3. doi: 10.1109/AESPC44649.2018.9033411.
|
[19] |
ELSHERBENI A Z and DEMIR V. The Finite-Difference Time-Domain Method for Electromagnetics with Matlab Simulations[M]. Raleigh, USA: SciTech Publishing, 2009. (查阅网上资料, 未找到本条文献页码信息, 请补充).
|