Citation: | ZHU Xinyi, PING Peng, HOU Wanying, SHI Quan, WU Qi. Multi-target Behavior and Intent Prediction on the Ground Under Incomplete Perception Conditions[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250322 |
[1] |
ENDSLEY M R. Toward a theory of situation awareness in dynamic systems[J]. Human Factors, 1995, 37(1): 32–64. doi: 10.1518/001872095779049543.
|
[2] |
ENDSLEY M R. Design and evaluation for situation awareness enhancement[J]. Proceedings of the Human Factors Society Annual Meeting, 1988, 32(2): 97–101. doi: 10.1177/154193128803200221.
|
[3] |
KOTT A and MCENEANEY W M. Adversarial Reasoning: Computational Approaches to Reading the Opponent's Mind[M]. New York: Chapman and Hall/CRC, 2006: 340. doi: 10.1201/9781420011012.
|
[4] |
GMYTRASIEWICZ P J and DOSHI P. A framework for sequential planning in multi-agent settings[J]. Journal of Artificial Intelligence Research, 2005, 24: 49–79. doi: 10.1613/jair.1579.
|
[5] |
GOODRICH M A and SCHULTZ A C. Human-robot interaction: A survey[J]. Foundations and Trends in Human-Computer Interaction, 2007, 1(3): 203–275. doi: 10.1561/1100000005.
|
[6] |
王坤, 丁麒龙. 利用自适应融合和混合锚检测器的遥感图像小目标检测算法[J]. 电子与信息学报, 2024, 46(7): 2942–2951. doi: 10.11999/JEIT230966.
WANG Kun and DING Qilong. Remote sensing images small object detection algorithm with adaptive fusion and hybrid anchor detector[J]. Journal of Electronics & Information Technology, 2024, 46(7): 2942–2951. doi: 10.11999/JEIT230966.
|
[7] |
肖振久, 张杰浩, 林渤翰. 特征协同与细粒度感知的遥感图像小目标检测[J]. 光电工程, 2024, 51(6): 240066. doi: 10.12086/oee.2024.240066.
XIAO Zhenjiu, ZHANG Jiehao, and LIN Bohan. Feature coordination and fine-grained perception of small targets in remote sensing images[J]. Opto-Electronic Engineering, 2024, 51(6): 240066. doi: 10.12086/oee.2024.240066.
|
[8] |
贾亮, 林铭文, 戚丽瑾, 等. 面向无人机航拍图像的多尺度目标检测研究[J]. 半导体光电, 2024, 45(3): 501–507,514. doi: 10.16818/j.issn1001-5868.2024010903.
JIA Liang, LIN Mingwen, QI Lijin, et al. Multiscale target detection for UAV aerial images[J]. Semiconductor Optoelectronics, 2024, 45(3): 501–507,514. doi: 10.16818/j.issn1001-5868.2024010903.
|
[9] |
黄玉玲, 陶昕辰, 朱涛, 等. 残差对抗目标检测算法的遥感图像检测[J]. 电光与控制, 2023, 30(7): 63–67. doi: 10.3969/j.issn.1671-637X.2023.07.011.
HUANG Yuling, TAO Xinchen, ZHU Tao, et al. A remote sensing image detection method based on residuals adversarial object detection algorithm[J]. Electronics Optics & Control, 2023, 30(7): 63–67. doi: 10.3969/j.issn.1671-637X.2023.07.011.
|
[10] |
段玉先, 刘昌云, 魏文凤. 战场态势感知关键技术研究[J]. 火力与指挥控制, 2021, 46(11): 1–11,19. doi: 10.3969/j.issn.1002-0640.2021.11.001.
DUAN Yuxian, LIU Changyun, and WEI Wenfeng. Review of key technologies for battlefield situational awareness[J]. Fire Control & Command Control, 2021, 46(11): 1–11,19. doi: 10.3969/j.issn.1002-0640.2021.11.001.
|
[11] |
LI Lemin, SONG Yafei, WANG Ke, et al. BiLSTM-TCN: An aerial target intent recognition model[C]. 2023 China Automation Congress (CAC), Chongqing, China, 2023: 1164–1170. doi: 10.1109/CAC59555.2023.10451474.
|
[12] |
龚诚, 衣军波, 蔡林恭, 等. 基于知识图谱嵌入学习的目标意图智能识别方法[J]. 舰船电子工程, 2023, 43(1): 32–35,40. doi: 10.3969/j.issn.1672-9730.2023.01.008.
GONG Cheng, YI Junbo, CAI Lingong, et al. Intelligent recognition method of target intention based on knowledge graph embedded learning[J]. Ship Electronic Engineering, 2023, 43(1): 32–35,40. doi: 10.3969/j.issn.1672-9730.2023.01.008.
|
[13] |
陈优敏, 李长云. 基于知识图谱的目标战术意图识别仿真[J]. 计算机仿真, 2019, 36(8): 1–4,19. doi: 10.3969/j.issn.1006-9348.2019.08.001.
CHEN Youmin and LI Changyun. Simulation of target tactical intention recognition based on knowledge map[J]. Computer Simulation, 2019, 36(8): 1–4,19. doi: 10.3969/j.issn.1006-9348.2019.08.001.
|
[14] |
尹翔, 张萌, 陈梦乔. 基于判别分析的空中目标作战意图识别[J]. 弹箭与制导学报, 2018, 38(3): 46–50. doi: 10.15892/j.cnki.djzdxb.2018.03.011.
YIN Xiang, ZHANG Meng, and CHEN Mengqiao. Combat intention recognition of the target in the air based on discriminant analysis[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2018, 38(3): 46–50. doi: 10.15892/j.cnki.djzdxb.2018.03.011.
|
[15] |
KIM P S, HYUN S Y, and HA Y G. Battlefield situation awareness model using convolutional LSTM[C]. 2023 IEEE International Conference on Big Data and Smart Computing (BigComp), Jeju, Korea, Republic of, 2023: 369–370. doi: 10.1109/BigComp57234.2023.00086.
|
[16] |
KIM A and LEE D. Dynamic Bayesian network-based situational awareness and course of action decision-making support model[J]. Expert Systems with Applications, 2024, 252: 124093. doi: 10.1016/j.eswa.2024.124093.
|
[17] |
王宇航, 董宝良, 公超, 等. 基于意图识别的空中群目标动态威胁评估[J]. 计算机与现代化, 2023(12): 100–104, 111. doi: 10.3969/j.issn.1006-2475.2023.12.017.
WANG Yuhang, DONG Baoliang, GONG Chao, et al. Dynamic threat assessment of air swarm targets based on intent recognition[J]. Computer and Modernization, 2023(12): 100–104+111. doi: 10.3969/j.issn.1006-2475.2023.12.017.
|
[18] |
FOERSTER J N, ASSAEL Y M, DE FREITAS N, et al. Learning to communicate with deep multi-agent reinforcement learning[C]. Proceedings of the 30th International Conference on Neural Information Processing Systems, Barcelona, Spain, 2016: 2145–2153.
|
[19] |
LIU Yongkang, QI Xuewei, SISBOT E A, et al. Multi-agent trajectory prediction with graph attention isomorphism neural network[C]. 2022 IEEE Intelligent Vehicles Symposium (IV), Aachen, Germany, 2022: 273–279. doi: 10.1109/IV51971.2022.9827155.
|
[20] |
武健, 舒健生, 赵建波. 基于场论的巡航导弹作战威胁建模[J]. 四川兵工学报, 2009, 30(9): 50–52. doi: 10.3969/j.issn.1006-0707.2009.09.016.
WU Jian, SHU Jiansheng, and ZHAO Jianbo. Operational threat modeling of cruise missiles based on field theory[J]. Journal of Ordnance Equipment Engineering, 2009, 30(9): 50–52. doi: 10.3969/j.issn.1006-0707.2009.09.016. (查阅网上资料,未找到本条文献英文翻译信息,请确认).
|
[21] |
孙庆鹏, 李战武, 常一哲. 基于威力势场的多机种威胁评估方法[J]. 系统工程与电子技术, 2018, 40(9): 1993–1999. doi: 10.3969/j.issn.1001-506X.2018.09.15.
SUN Qingpeng, LI Zhanwu, and CHANG Yizhe. Multi-types airplane threat assessment based on combat power field[J]. Systems Engineering and Electronics, 2018, 40(9): 1993–1999. doi: 10.3969/j.issn.1001-506X.2018.09.15.
|
[22] |
DOUCET A, FREITAS N, and GORDON N. Sequential Monte Carlo methods in Practice[M]. New York: Springer, 2001: 582. doi: 10.1007/978-1-4757-3437-9.
|
[23] |
BERNDT D J and CLIFFORD J. Using dynamic time warping to find patterns in time series[C]. Proceedings of the 3rd International Conference on Knowledge Discovery and Data Mining, Seattle, USA, 1994: 359–370.
|
[24] |
HASTIE T, TIBSHIRANI R, FRIEDMAN J, et al. The Elements of Statistical Learning: Data Mining, Inference, and Prediction[M]. New York: Springer, 2009: 745. doi: 10.1007/978-0-387-84858-7.
|
[25] |
CHUNG Junyoung, GULCEHRE C, CHO K H, et al. Empirical evaluation of gated recurrent neural networks on sequence modeling[J]. arXiv preprint arXiv: 1412.3555, 2014. doi: 10.48550/arXiv.1412.3555. (查阅网上资料,不确定本文献类型是否正确,请确认).
|
[26] |
MISRA D. Mish: A self regularized non-monotonic neural activation function[J]. arXiv preprint arXiv: 1908.08681, 2019. doi: 10.48550/arXiv.1908.08681. (查阅网上资料,不确定本文献类型是否正确,请确认).
|
[27] |
GLOROT X and BENGIO Y. Understanding the difficulty of training deep feedforward neural networks[C]. Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics, Sardinia, Italy, 2010: 249–256.
|
[28] |
姚启达, 平鹏, 朱心怡, 等. 基于机器学习的磁性元件磁芯损耗预测方法[J]. 南通大学学报: 自然科学版, 2025, 24(2): 29–38. doi: 10.12194/j.ntu.20241023001.
YAO Qida, PING Peng, ZHU Xinyi, et al. Core loss prediction method for magnetic components based on machine learning[J]. Journal of Nantong University: Natural Science Edition, 2025, 24(2): 29–38. doi: 10.12194/j.ntu.20241023001.
|
[29] |
FIGUEIRA J, GRECO S, and EHROGOTT M. Multiple Criteria Decision Analysis: State of the Art Surveys[M]. New York: Springer, 2005: 1048.
|
[30] |
SAATY T L. Decision making with the analytic hierarchy process[J]. International Journal of Services Sciences, 2008, 1(1): 83–98. doi: 10.1504/IJSSCI.2008.017590.
|
[31] |
SINNOTT R W. Virtues of the haversine[J]. Sky and Telescope, 1984, 68(2): 158–159.
|
[32] |
SHI Xingjian, CHEN Zhourong, WANG Hao, et al. Convolutional LSTM network: A machine learning approach for precipitation nowcasting[C]. Proceedings of the 29th International Conference on Neural Information Processing Systems - Volume 1, Montreal, Canada, 2015: 802–810.
|
[33] |
VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]. Proceedings of the 31st International Conference on Neural Information Processing Systems, Long Beach, USA, 2017: 6000–6010.
|