Citation: | YANG Wensheng, PAN Chengsheng. Edge Network Data Scheduling Optimization Method Integrating Improved Jaya and Cluster Center Selection Algorithm[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250317 |
[1] |
LI Bingyao, HOU Jingming, WANG Xinghua, et al. High-resolution flood numerical model and Dijkstra algorithm based risk avoidance routes planning[J]. Water Resources Management, 2023, 37(8): 3243–3258. doi: 10.1007/s11269-023-03500-5.
|
[2] |
BAI Wenbin and TAMARU H. Research on collision avoidance route planning based on A-star algorithm[J]. Navigation, 2023, 223: 31–32. doi: 10.18949/jinnavi.223.0_31.
|
[3] |
ARNAU R, CALABUIG J M, GARCÍA-RAFFI L M, et al. A Bellman-Ford algorithm for the path-length-weighted distance in graphs[J]. Mathematics, 2024, 12(16): 2590. doi: 10.3390/math12162590.
|
[4] |
安阳, 王秀青, 赵明华. 基于策略融合及Spiking DRL的移动机器人路径规划方法[J]. 计算机科学, 2024, 51(11A): 240100211. doi: 10.11896/jsjkx.240100211.
AN Yang, WANG Xiuqing, and ZHAO Minghua. Mobile robots' path planning method based on policy fusion and Spiking deep reinforcement learning[J]. Computer Science, 2024, 51(11A): 240100211. doi: 10.11896/jsjkx.240100211.
|
[5] |
KONG Fuchen, WANG Qi, GAO Shang, et al. B-APFDQN: A UAV path planning algorithm based on deep Q-network and artificial potential field[J]. IEEE Access, 2023, 11: 44051–44064. doi: 10.1109/ACCESS.2023.3273164.
|
[6] |
KONAR A, CHAKRABORTY I G, SINGH S J, et al. A deterministic improved Q-learning for path planning of a mobile robot[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2013, 43(5): 1141–1153. doi: 10.1109/TSMCA.2012.2227719.
|
[7] |
MNIH V, KAVUKCUOGLU K, SILVER D, et al. Human-level control through deep reinforcement learning[J]. Nature, 2015, 518(7540): 529–533. doi: 10.1038/nature14236.
|
[8] |
刘筱成. 基于强化学习的无人机路径规划研究[D]. [硕士论文], 青岛大学, 2024.
LIU Xiaocheng. Research on UAV path planning based on reinforcement learning[D]. [Master dissertation], Qingdao University, 2024.
|
[9] |
DORIGO M and BLUM C. Ant colony optimization theory: A survey[J]. Theoretical Computer Science, 2005, 344(2/3): 243–278. doi: 10.1016/j.tcs.2005.05.020.
|
[10] |
DAI Xiaolin, LONG Shuai, ZHANG Zhiwe, et al. Mobile robot path planning based on ant colony algorithm with A* evaluation function[J]. Frontiers in Neurorobotics, 2019, 13: 15. doi: 10.3389/fnbot.2019.00015.
|
[11] |
CHEN Di. Application of improved genetic algorithms in path planning[J]. Journal of Internet Technology, 2024, 25(7): 1091–1099. doi: 10.70003/160792642024122507013.
|
[12] |
MIAO Hui and TIAN Yuchu. Dynamic robot path planning using an enhanced simulated annealing approach[J]. Applied Mathematics and Computation, 2013, 222: 420–437. doi: 10.1016/j.amc.2013.07.022.
|
[13] |
DEHGHANI M and TROJOVSKÝ P. Osprey optimization algorithm: A new bio-inspired metaheuristic algorithm for solving engineering optimization problems[J]. Frontiers in Mechanical Engineering, 2023, 8: 1126450. doi: 10.3389/fmech.2022.1126450.
|
[14] |
BRAIK M, HAMMOURI A, ATWAN J, et al. White Shark Optimizer: A novel bio-inspired meta-heuristic algorithm for global optimization problems[J]. Knowledge-Based Systems, 2022, 243: 108457. doi: 10.1016/j.knosys.2022.108457.
|
[15] |
AKBARI M A, ZARE M, AZIZIPANAH-ABARGHOOEE B, et al. The cheetah optimizer: A nature-inspired metaheuristic algorithm for large-scale optimization problems[J]. Scientific Reports, 2022, 12(1): 10953. doi: 10.1038/s41598-022-14338-z.
|
[16] |
VENKATA RAO R. Jaya: A simple and new optimization algorithm for solving constrained and unconstrained optimization problems[J]. International Journal of Industrial Engineering Computations, 2016, 7(1): 19–34. doi: 10.5267/j.ijiec.2015.8.004.
|
[17] |
杨晅, 陈宏宇. 基于数据与压缩率预测的空间机器人集群中心节点选择策略[J]. 中国科学院大学学报(中英文), 2024, 41(5): 695–704. doi: 10.7523/j.ucas.2023.007.
YANG Xuan and CHEN Hongyu. Central node selection strategy of spatial robot cluster based on data and compression ratio prediction[J]. Journal of University of Chinese Academy of Sciences, 2024, 41(5): 695–704. doi: 10.7523/j.ucas.2023.007.
|
[18] |
华翔, 石成泷, 李宝华, 等. 一种自适应的无人集群中心节点选择方法[J]. 系统仿真学报, 2021, 33(11): 2636–2646. doi: 16182/j.issn1004731x.joss.21-FZ0770.
HUA Xiang, SHI Chenglong, LI Baohua, et al. Adaptive center node selection method for unmanned cluster[J]. Journal of System Simulation, 2021, 33(11): 2636–2646. doi: 16182/j.issn1004731x.joss.21-FZ0770.
|
[19] |
BOU S, KITAGAWA H, and AMAGASA T. CPiX: Real-time analytics over out-of-order data streams by incremental sliding-window aggregation[J]. IEEE Transactions on Knowledge and Data Engineering, 2022, 34(11): 5239–5250. doi: 10.1109/TKDE.2021.3054898.
|
[20] |
NAGHIBI M and BARATI H. SHSDA: Secure hybrid structure data aggregation method in wireless sensor networks[J]. Journal of Ambient Intelligence and Humanized Computing, 2021, 12(12): 10769–10788. doi: 10.1007/s12652-020-02751-z.
|
[21] |
CHENG Long, WANG Ying, LIU Qingzhi, et al. Network-aware locality scheduling for distributed data operators in data centers[J]. IEEE Transactions on Parallel and Distributed Systems, 2021, 32(6): 1494–1510. doi: 10.1109/TPDS.2021.3053241.
|
[22] |
ULLAH I and YOUN H. Efficient data aggregation with node clustering and extreme learning machine for WSN[J]. The Journal of Supercomputing, 2020, 76(12): 10009–10035. doi: 10.1007/s11227-020-03236-8.
|