Citation: | MAO Lin, ZHANG Haixin, HE Zhiwei, GAO Mingyu, DONG Zhekang. A Battery Internal-Short-Circuit Fault Diagnosis Method Combining Battery Phase Plane with Conformer-BiGRU Network[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250313 |
[1] |
JI Xiaoyue, CHEN Yi, WANG Junfan, et al. Time-frequency hybrid neuromorphic computing architecture development for battery state-of-health estimation[J]. IEEE Internet of Things Journal, 2024, 11(24): 39941–39957. doi: 10.1109/JIOT.2024.3448350.
|
[2] |
HU Shimin, LIU Zhihui, TAN Yongshi, et al. The status quo and future trends of new energy vehicle power batteries in China—analysis from policy perspective[J]. Energy Reports, 2022, 8(S8): 63–80. doi: 10.1016/j.egyr.2022.09.082.
|
[3] |
丁徐强, 陶琦, 罗鹰. 锂离子电池在新能源汽车中的设计及应用[J]. 储能科学与技术, 2023, 12(5): 1751–1752.
DING Xuqiang, TAO Qi, and LUO Ying. Design and application of lithium-ion batteries in new energy vehicles[J]. Energy Storage Science and Technology, 2023, 12(5): 1751–1752.
|
[4] |
KHAN F M N U, RASUL M G, SAYEM A S M, et al. Maximizing energy density of lithium-ion batteries for electric vehicles: A critical review[J]. Energy Reports, 2023, 9(S11): 11–21. doi: 10.1016/j.egyr.2023.08.069.
|
[5] |
XU Jingjing, CAI Xinyun, CAI Songming, et al. High‐energy lithium‐ion batteries: Recent progress and a promising future in applications[J]. Energy & Environmental Materials, 2023, 6(5): e12450. doi: 10.1002/eem2.12450.
|
[6] |
SEPASIAHOOYI S and ABDOLLAHI F. Fault detection of new and aged lithium-ion battery cells in electric vehicles[J]. Green Energy and Intelligent Transportation, 2024, 3(3): 100165. doi: 10.1016/j.geits.2024.100165.
|
[7] |
朱晓庆, 王震坡, WANG H, 等. 锂离子动力电池热失控与安全管理研究综述[J]. 机械工程学报, 2020, 56(14): 91–118. doi: 10.3901/JME.2020.14.091.
ZHU Xiaoqing, WANG Zhenpo, WANG H, et al. Review of thermal runaway and safety management for lithium-ion traction batteries in electric vehicles[J]. Journal of Mechanical Engineering, 2020, 56(14): 91–118. doi: 10.3901/JME.2020.14.091.
|
[8] |
REN Dongsheng, FENG Xuning, LIU Lishuo, et al. Investigating the relationship between internal short circuit and thermal runaway of lithium-ion batteries under thermal abuse condition[J]. Energy Storage Materials, 2021, 34: 563–573. doi: 10.1016/j.ensm.2020.10.020.
|
[9] |
陈泽宇, 熊瑞, 孙逢春. 电动汽车电池安全事故分析与研究现状[J]. 机械工程学报, 2019, 55(24): 93–104. doi: 10.3901/JME.2019.24.093.
CHEN Zeyu, XIONG Rui, and SUN Fengchun. Research status and analysis for battery safety accidents in electric vehicles[J]. Journal of Mechanical Engineering, 2019, 55(24): 93–104. doi: 10.3901/JME.2019.24.093.
|
[10] |
CORTADA-TORBELLINO M, ELVIRA D G, EL AROUDI A, et al. Review of lithium-ion battery internal changes due to mechanical loading[J]. Batteries, 2024, 10(7): 258. doi: 10.3390/batteries10070258.
|
[11] |
KONG Jinzhen, LIU Jie, ZHU Jingzhe, et al. Review on lithium-ion battery PHM from the perspective of key PHM steps[J]. Chinese Journal of Mechanical Engineering, 2024, 37(1): 71. doi: 10.1186/s10033-024-01055-z.
|
[12] |
ZHAO Hongqian, ZHAO Zhigang, SHU Xing, et al. Voltage fault diagnosis and prognostic of lithium-ion batteries in electric scooters based on hybrid neural network and multiple thresholds[J]. Journal of Power Sources, 2024, 618: 235197. doi: 10.1016/j.jpowsour.2024.235197.
|
[13] |
ZHAO Jiahui, LIU Mingyi, ZHANG Bin, et al. Review of lithium-ion battery fault features, diagnosis methods, and diagnosis procedures[J]. IEEE Internet of Things Journal, 2024, 11(11): 18936–18950. doi: 10.1109/JIOT.2023.3324322.
|
[14] |
KONG Xiangdong, ZHENG Yuejiu, OUYANG Minggao, et al. Fault diagnosis and quantitative analysis of micro-short circuits for lithium-ion batteries in battery packs[J]. Journal of Power Sources, 2018, 395: 358–368. doi: 10.1016/j.jpowsour.2018.05.097.
|
[15] |
ZHANG Zhaosheng, BI Jiyu, LI Da, et al. Battery defect detection for real world vehicles based on Gaussian distribution parameterization developed LCSS[J]. Journal of Energy Storage, 2024, 75: 109679. doi: 10.1016/j.est.2023.109679.
|
[16] |
PAN Tinglong, YU Ziyi, MA Shunshun, et al. Detection of internal short circuit in lithium-ion batteries based on electrothermal coupling model[J]. Journal of Energy Storage, 2025, 106: 114685. doi: 10.1016/j.est.2024.114685.
|
[17] |
OUYANG Minggao, ZHANG Mingxuan, FENG Xuning, et al. Internal short circuit detection for battery pack using equivalent parameter and consistency method[J]. Journal of Power Sources, 2015, 294: 272–283. doi: 10.1016/j.jpowsour.2015.06.087.
|
[18] |
XIA Bing, SHANG Yunlong, NGUYEN T, et al. A correlation based fault detection method for short circuits in battery packs[J]. Journal of Power Sources, 2017, 337: 1–10. doi: 10.1016/j.jpowsour.2016.11.007.
|
[19] |
高明裕, 蔡林辉, 孙长城, 等. 一种基于斯皮尔曼秩相关结合神经网络的电池组内部短路故障检测算法[J]. 电子与信息学报, 2022, 44(11): 3734–3747. doi: 10.11999/JEIT210975.
GAO Mingyu, CAI Linhui, SUN Changcheng, et al. An internal short circuit fault detecting of battery pack based on spearman rank correlation combined with neural network[J]. Journal of Electronics & Information Technology, 2022, 44(11): 3734–3747. doi: 10.11999/JEIT210975.
|
[20] |
CHEN Siwen, SUN Jinlei, TANG Yong, et al. A fault diagnosis method of battery internal short circuit based on multi-feature recognition[J]. Transactions of the Institute of Measurement and Control, 2024, 46(11): 2186–2197. doi: 10.1177/01423312241233799.
|
[21] |
ZHANG Kai, JIANG Lulu, DENG Zhongwei, et al. An early soft internal short-circuit fault diagnosis method for lithium-ion battery packs in electric vehicles[J]. IEEE/ASME Transactions on Mechatronics, 2023, 28(2): 644–655. doi: 10.1109/TMECH.2023.3234770.
|
[22] |
GU Xin, LI Jinglun, LIU Kailong, et al. A precise minor-fault diagnosis method for lithium-ion batteries based on phase plane sample entropy[J]. IEEE Transactions on Industrial Electronics, 2024, 71(8): 8853–8861. doi: 10.1109/TIE.2023.3319717.
|
[23] |
LUCAFERRI V, QUERCIO M, LAUDANI A, et al. A review on battery model-based and data-driven methods for battery management systems[J]. Energies, 2023, 16(23): 7807. doi: 10.3390/en16237807.
|
[24] |
耿陈, 彭乔, 孟锦豪, 等. 考虑弛豫过程的锂离子电池电-热-老化耦合建模[J]. 电力自动化设备, 2025, 45(3): 33–39. doi: 10.16081/j.epae.202501001.
GENG Chen, PENG Qiao, MENG Jinhao, et al. Coupled electro-thermal-aging modeling for lithium-ion battery considering relaxation process[J]. Electric Power Automation Equipment, 2025, 45(3): 33–39. doi: 10.16081/j.epae.202501001.
|
[25] |
LI Jinglun, GU Xin, MAO Ziheng, et al. An early-fault diagnostic method based on phase plane for lithium-ion batteries under complex operation conditions[J]. Journal of Energy Storage, 2024, 96: 112638. doi: 10.1016/j.est.2024.112638.
|
[26] |
SHAFIQ M and GU Zhaoquan. Deep residual learning for image recognition: A survey[J]. Applied Sciences, 2022, 12(18): 8972. doi: 10.3390/app12188972.
|
[27] |
DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16x16 words: Transformers for image recognition at scale[J]. arXiv preprint arXiv: 2010.11929, 2020.
|
[28] |
LIU Xuyang, CAI Hongchang, ZHOU Zihan, et al. Enhancing multi-type fault diagnosis in lithium-ion battery systems: Vision transformer-based transfer learning approach[J]. Journal of Power Sources, 2024, 624: 235610. doi: 10.1016/j.jpowsour.2024.235610.
|
[29] |
张照娓, 郭天滋, 高明裕, 等. 电动汽车锂离子电池荷电状态估算方法研究综述[J]. 电子与信息学报, 2021, 43(7): 1803–1815. doi: 10.11999/JEIT200487.
ZHANG Zhaowei, GUO Tianzi, GAO Mingyu, et al. Review of SoC estimation methods for electric vehicle li-ion batteries[J]. Journal of Electronics & Information Technology, 2021, 43(7): 1803–1815. doi: 10.11999/JEIT200487.
|
[30] |
TANG Chao, QIN Yunchuan, LIU Yumeng, et al. An efficient method for detecting abnormal electricity behavior[J]. Energies, 2024, 17(11): 2502. doi: 10.3390/en17112502.
|
[31] |
SUN Bingxu, LIANG Dekuan, and ZHANG Hanyuan. An improved graph deviation network for chiller fault diagnosis by integrating the sparse cointegration analysis and the convolutional block attention mechanism[J]. Energies, 2024, 17(16): 4003. doi: 10.3390/en17164003.
|
[32] |
WANG Dantong, RUAN Pan, XU Di, et al. TranAD: A deep transformer model for fault diagnosis of lithium batteries[C]. Proceedings of the 2023 International Conference on Smart Electrical Grid and Renewable Energy (SEGRE), Changsha, China, 2023: 133–139. doi: 10.1109/SEGRE58867.2023.00028.
|
[33] |
XIE Tianming, XU Qifa, and JIANG Cuixia. Anomaly detection for multivariate times series through the multi-scale convolutional recurrent variational autoencoder[J]. Expert Systems with Applications, 2023, 231: 120725. doi: 10.1016/j.eswa.2023.120725.
|
[34] |
GAO Zhengpeng, CHANG Penghui, PENG Yongjun, et al. Multi-feature weighted battery pack consistency evaluation based on massive real-world data[J]. Journal of Energy Storage, 2025, 115: 115919. doi: 10.1016/j.est.2025.115919.
|
[35] |
HAN Yan, LIU Yang, HUANG Qingqing, et al. SOC estimation for lithium-ion batteries based on BiGRU with SE attention and Savitzky-Golay filter[J]. Journal of Energy Storage, 2024, 90: 111930. doi: 10.1016/j.est.2024.111930.
|