| Citation: | MA Jinlin, YANG Jipeng. Tensor-Train Decomposition for Lightweight Liver Tumor Segmentation[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250293 |
| [1] |
RONNEBERGER O, FISCHER P, and BROX T. U-Net: Convolutional networks for biomedical image segmentation[C]. The 18th International Conference on Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015, Munich, Germany, 2015: 234–241. doi: 10.1007/978-3-319-24574-4_28.
|
| [2] |
HUANG Huimin, LIN Lanfen, TONG Ruofeng, et al. UNet 3+: A full-scale connected unet for medical image segmentation[C]. The ICASSP 2020–2020 IEEE International Conference on Acoustics, Speech and Signal Processing, Barcelona, Spain, 2020: 1055–1059. doi: 10.1109/ICASSP40776.2020.9053405.
|
| [3] |
TANG Fenghe, WANG Lingtao, NING Chunping, et al. CMU-Net: A strong convmixer-based medical ultrasound image segmentation network[C]. 2023 IEEE 20th International Symposium on Biomedical Imaging, Cartagena, Colombia, 2023: 1–5. doi: 10.1109/ISBI53787.2023.10230609.
|
| [4] |
SHU Xin, WANG Jiashu, ZHANG Aoping, et al. CSCA U-Net: A channel and space compound attention CNN for medical image segmentation[J]. Artificial Intelligence in Medicine, 2024, 150: 102800. doi: 10.1016/j.artmed.2024.102800.
|
| [5] |
CHEN Jieneng, LU Yongyi, YU Qihang, et al. TransUNet: Transformers make strong encoders for medical image segmentation[EB/OL]. https://arxiv.org/abs/2102.04306, 2021.
|
| [6] |
CAO Hu, WANG Yueyue, CHEN J, et al. Swin-Unet: Unet-like pure transformer for medical image segmentation[M]. KARLINSKY L, MICHAELI T, and NISHINO K. Computer Vision– ECCV 2022 Workshops. Cham: Springer, 2023: 205–218. doi: 10.1007/978-3-031-25066-8_9.
|
| [7] |
FU Liyao, CHEN Yunzhu, JI Wei, et al. SSTrans-Net: Smart swin transformer network for medical image segmentation[J]. Biomedical Signal Processing and Control, 2024, 91: 106071. doi: 10.1016/j.bspc.2024.106071.
|
| [8] |
XING Zhaohu, YE Tian, YANG Yijun, et al. SegMamba: Long-range sequential modeling mamba for 3D medical image segmentation[C]. The 27th International Conference on Medical Image Computing and Computer Assisted Intervention, Marrakesh, Morocco, 2024: 578–588. doi: 10.1007/978-3-031-72111-3_54.
|
| [9] |
DUTTA T K, MAJHI S, NAYAK D R, et al. SAM-Mamba: Mamba guided SAM architecture for generalized zero-shot polyp segmentation[C]. 2025 IEEE/CVF Winter Conference on Applications of Computer Vision, Tucson, USA, 2025: 4655–4664. doi: 10.1109/WACV61041.2025.00457.
|
| [10] |
KUI Xiaoyan, JIANG Shen, LI Qinsong, et al. Gl-MambaNet: A global-local hybrid Mamba network for medical image segmentation[J]. Neurocomputing, 2025, 626: 129580. doi: 10.1016/j.neucom.2025.129580.
|
| [11] |
VALANARASU J M J and PATEL V M. UNeXt: MLP-based rapid medical image segmentation network[C]. The 25th International Conference on Medical Image Computing and Computer Assisted Intervention, Singapore, Singapore, 2022: 23–33. doi: 10.1007/978-3-031-16443-9_3.
|
| [12] |
WU Renkai, LIANG Pengchen, HUANG Xuan, et al. MHorUNet: High-order spatial interaction UNet for skin lesion segmentation[J]. Biomedical Signal Processing and Control, 2024, 88: 105517. doi: 10.1016/j.bspc.2023.105517.
|
| [13] |
TROCKMAN A and KOLTER J Z. Patches are all you need?[EB/OL]. https://arxiv.org/abs/2201.09792, 2022.
|
| [14] |
HAN Zhimeng, JIAN Muwei, and WANG Gaige. ConvUNeXt: An efficient convolution neural network for medical image segmentation[J]. Knowledge-Based Systems, 2022, 253: 109512. doi: 10.1016/j.knosys.2022.109512.
|
| [15] |
TANG Fenghe, DING Jianrui, QUAN Quan, et al. CMUNEXT: An efficient medical image segmentation network based on large kernel and skip fusion[C]. 2024 IEEE International Symposium on Biomedical Imaging, Athens, Greece, 2024: 1–5. doi: 10.1109/ISBI56570.2024.10635609.
|
| [16] |
GUO Menghao, LU Chengze, HOU Qibin, et al. SegNeXt: Rethinking convolutional attention design for semantic segmentation[C]. The 36th International Conference on Neural Information Processing Systems, New Orleans, USA, 2022: 84. doi: 10.5555/3600270.3600354.
|
| [17] |
GARIPOV T, PODOPRIKHIN D, NOVIKOV A, et al. Ultimate tensorization: Compressing convolutional and FC layers alike[EB/OL]. https://arxiv.org/abs/1611.03214, 2016.
|
| [18] |
YAN Jiale, ANDO K, YU J, et al. TT-MLP: Tensor train decomposition on deep MLPs[J]. IEEE Access, 2023, 11: 10398–10411. doi: 10.1109/ACCESS.2023.3240784.
|
| [19] |
YU Weihao, ZHOU Pan, YAN Shuicheng, et al. InceptionNeXt: When inception meets convnext[C]. 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, USA, 2024: 5672–5683. doi: 10.1109/CVPR52733.2024.00542.
|
| [20] |
SZEGEDY C, VANHOUCKE V, IOFFE S, et al. Rethinking the inception architecture for computer vision[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 2818–2826. doi: 10.1109/CVPR.2016.308.
|
| [21] |
LIAO Juan, CHEN Minhui, ZHANG Kai, et al. SC-Net: A new strip convolutional network model for rice seedling and weed segmentation in paddy field[J]. Computers and Electronics in Agriculture, 2024, 220: 108862. doi: 10.1016/j.compag.2024.108862.
|
| [22] |
MA Yuliang, WU Liping, GAO Yunyuan, et al. ULFAC-Net: Ultra-lightweight fully asymmetric convolutional network for skin lesion segmentation[J]. IEEE Journal of Biomedical and Health Informatics, 2023, 27(6): 2886–2897. doi: 10.1109/jbhi.2023.3259802.
|
| [23] |
BILIC P, CHRIST P, LI H B, et al. The liver tumor segmentation benchmark (LiTS)[J]. Medical Image Analysis, 2023, 84: 102680. doi: 10.1016/j.media.2022.102680.
|
| [24] |
CHRIST P F, ELSHAER M E A, ETTLINGER F, et al. Automatic liver and lesion segmentation in CT using cascaded fully convolutional neural networks and 3D conditional random fields[C].The 19th International Conference on Medical Image Computing and Computer-Assisted Intervention–MICCAI 2016, Athens, Greece, 2016: 415–423. doi: 10.1007/978-3-319-46723-8_48.
|
| [25] |
JIANG Huiyan, DIAO Zhaoshuo, SHI Tianyu, et al. A review of deep learning-based multiple-lesion recognition from medical images: Classification, detection and segmentation[J]. Computers in Biology and Medicine, 2023, 157: 106726. doi: 10.1016/j.compbiomed.2023.106726.
|
| [26] |
KHARE N, THAKUR P S, KHANNA P, et al. Analysis of loss functions for image reconstruction using convolutional autoencoder[C]. The 6th International Conference on Computer Vision and Image Processing, Rupnagar, India, 2021: 338–349. doi: 10.1007/978-3-031-11349-9_30.
|
| [27] |
ABRAHAM N and KHAN N M. A novel focal tversky loss function with improved attention U-Net for lesion segmentation[C]. 2019 IEEE 16th International Symposium on Biomedical Imaging, Venice, Italy, 2019: 683–687. doi: 10.1109/ISBI.2019.8759329.
|
| [28] |
LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]. 2007 IEEE International Conference on Computer Vision, Venice, Italy, 2017: 2999–3007. doi: 10.1109/ICCV.2017.324.
|
| [29] |
MONTAZEROLGHAEM M, SUN Yu, SASSO G, et al. U-Net architecture for prostate segmentation: The impact of loss function on system performance[J]. Bioengineering, 2023, 10(4): 412. doi: 10.3390/bioengineering10040412.
|
| [30] |
HU Jie, SHEN Li, and SUN Gang. Squeeze-and-excitation networks[C]. Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 7132–7141. doi: 10.1109/CVPR.2018.00745.
|
| [31] |
WOO S, PARK J, LEE J Y, et al. CBAM: Convolutional block attention module[C]. The 15th European Conference on Computer Vision, Munich, Germany, 2018: 3–19. doi: 10.1007/978-3-030-01234-2_1.
|
| [32] |
WANG Qilong, WU Banggu, ZHU Pengfei, et al. ECA-Net: Efficient channel attention for deep convolutional neural networks[C]. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, USA, 2020: 11531–11539. doi: 10.1109/CVPR42600.2020.01155.
|