Citation: | HUANG Linxuan, HE Minghao, YU Chunlai, FENG Mingyue, ZHANG Fuqun, ZHANG Yinan. Data Enhancement for Few-shot Radar Countermeasure Reconnaissance via Temporal-Conditional Generative Adversarial Networks[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250280 |
[1] |
陈韬伟, 王会源, 马一鸣, 等. 基于复杂网络建模的雷达辐射源信号脉间特征提取[J]. 火力与指挥控制, 2024, 49(12): 77–84,92. doi: 10.3969/j.issn.1002-0640.2024.12.009.
CHEN Taowei, WANG Huiyuan, MA Yiming, et al. Inter-pulse feature extraction of radar emitter signals and its analysis based on complex network modeling[J]. Fire Control & Command Control, 2024, 49(12): 77–84,92. doi: 10.3969/j.issn.1002-0640.2024.12.009.
|
[2] |
陈涛, 邱宝传, 肖易寒, 等. 基于点云分割网络的雷达信号分选方法[J]. 电子与信息学报, 2024, 46(4): 1391–1398. doi: 10.11999/JEIT230622.
CHEN Tao, QIU Baochuan, XIAO Yihan, et al. The radar signal deinterleaving method base on point cloud segmentation network[J]. Journal of Electronics & Information Technology, 2024, 46(4): 1391–1398. doi: 10.11999/JEIT230622.
|
[3] |
SHORTEN C and KHOSHGOFTAAR T M. A survey on image data augmentation for deep learning[J]. Journal of Big Data, 2019, 6(1): 60. doi: 10.1186/s40537-019-0197-0.
|
[4] |
CHAWLA N V, BOWYER K W, HALL L O, et al. SMOTE: Synthetic minority over-sampling technique[J]. Journal of Artificial Intelligence Research, 2002, 16: 321–357. doi: 10.1613/jair.953.
|
[5] |
GOODFELLOW I J, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial nets[C]. The 28th International Conference on Neural Information Processing Systems, Montreal, Canada, 2014: 2672–2680.
|
[6] |
MIRZA M and OSINDERO S. Conditional generative adversarial nets[Z]. arXiv preprint arXiv: 1411.1784, 2014. doi: 10.48550/arXiv.1411.1784.
|
[7] |
YOON J, JARRETT D, and VAN DER SCHAAR M. Time-series generative adversarial networks[C]. The 33rd International Conference on Neural Information Processing Systems, Vancouver, Canada, 2019: 494.
|
[8] |
KHAN S and KUMAR V. A novel hybrid GRU-CNN and residual bias (RB) based RB-GRU-CNN models for prediction of PTB Diagnostic ECG time series data[J]. Biomedical Signal Processing and Control, 2024, 94: 106262. doi: 10.1016/j.bspc.2024.106262.
|
[9] |
WANG Zhongqi, SONG Chong, JIAO Zekun, et al. Synthetic aperture radar deep statistical imaging through diffusion generative model conditional inference[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 5227717. doi: 10.1109/TGRS.2024.3498442.
|
[10] |
ANG Yihao, HUANG Qiang, BAO Yifan, et al. TSGBench: Time series generation benchmark[J]. Proceedings of the VLDB Endowment, 2023, 17(3): 305–318. doi: 10.14778/3632093.3632097.
|
[11] |
ESKANDARINASAB M R, HAMDI S M, and BOUBRAHIMI S F. ChronoGAN: Supervised and embedded generative adversarial networks for time series generation[C]. 2024 International Conference on Machine Learning and Applications (ICMLA), Miami, USA, 2024: 567–574. doi: 10.1109/ICMLA61862.2024.00083.
|
[12] |
TANG Haocheng, LONG Jing, and WANG Junmei. Auxiliary discrminator sequence generative adversarial networks (ADSeqGAN) for few sample molecule generation[Z]. arXiv preprint arXiv: 2502.16446, 2025. doi: 10.48550/arXiv.2502.16446.
|
[13] |
CHOWDHURY M A, MODEKWE G, and LU Qiugang. Lithium-ion battery capacity prediction via conditional recurrent generative adversarial network-based time-series regeneration[Z]. arXiv preprint arXiv: 2503.12258, 2025. doi: 10.48550/arXiv.2503.12258.
|
[14] |
RUAN Shulan, ZHANG Yong, ZHANG Kun, et al. DAE-GAN: Dynamic aspect-aware Gan for text-to-image synthesis[C]. The IEEE/CVF International Conference on Computer Vision, Montreal, Canada, 2021: 13940–13949. doi: 10.1109/ICCV48922.2021.01370.
|
[15] |
YANG Yue, ZHANG Zhuo, MAO Wei, et al. Radar target recognition based on few-shot learning[J]. Multimedia Systems, 2023, 29(5): 2865–2875. doi: 10.1007/s00530-021-00832-3.
|
[16] |
史松昊, 王晓丹, 杨春晓, 等. 基于跨域小样本学习的SAR图像目标识别方法[J]. 计算机科学, 2024, 51(6A): 230800136. doi: 10.11896/jsjkx.230800136.
SHI Songhao, WANG Xiaodan, YANG Chunxiao, et al. SAR image target recognition based on cross domain few shot learning[J]. Computer Science, 2024, 51(6A): 230800136. doi: 10.11896/jsjkx.230800136.
|
[17] |
王玉冰, 程嗣怡, 周一鹏, 等. 基于DS证据理论的机载火控雷达空空工作模式判定[J]. 现代雷达, 2017, 39(5): 79–84. doi: 10.16592/j.cnki.1004-7859.2017.05.017.
WANG Yubing, CHENG Siyi, ZHOU Yipeng, et al. Air-to-air operation modes recognition of airborne fire control radar based on DS evidence theory[J]. Modern Radar, 2017, 39(5): 79–84. doi: 10.16592/j.cnki.1004-7859.2017.05.017.
|