Citation: | WU Qianhuo, WANG Lunyao, ZHA Xiaojing, CHU Zhufei, XIA Yinshui. Design of Reconfigurable FeFET-MUX and Its Application in Mapping[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250263 |
[1] |
LI Yueting, BAI Tianshuo, XU Xinyi, et al. A survey of MRAM-centric computing: From near memory to in memory[J]. IEEE Transactions on Emerging Topics in Computing, 2023, 11(2): 318–330. doi: 10.1109/TETC.2022.3214833.
|
[2] |
ANTOLINI A, LICO A, SCARSELLI E F, et al. An embedded PCM peripheral unit adding analog MAC in-memory computing feature addressing non-linearity and time drift compensation[C]. ESSCIRC 2022-IEEE 48th European Solid State Circuits Conference (ESSCIRC), Milan, Italy, 2022: 109–112. doi: 10.1109/ESSCIRC55480.2022.9911447.
|
[3] |
DING Zhetao, LI Xueyang, JIN Chengji, et al. Experimental demonstration of non-volatile Boolean logic with field configurable 1FeFET-1RRAM technology[J]. IEEE Electron Device Letters, 2024, 45(6): 1084–1087. doi: 10.1109/LED.2024.3390403.
|
[4] |
BEYER S, DÜNKEL S, TRENTZSCH M, et al. FeFET: A versatile CMOS compatible device with game-changing potential[C]. 2020 IEEE International Memory Workshop (IMW), Dresden, Germany, 2020: 1–4. doi: 10.1109/IMW48823.2020.9108150.
|
[5] |
MARCHAND C, NICOLAS A, MATRANGOLO P A, et al. FeFET based Logic-in-Memory design methodologies, tools and open challenges[C]. 2023 IFIP/IEEE 31st International Conference on Very Large Scale Integration (VLSI-SoC), Dubai, United Arab Emirates, 2023: 1–6. doi: 10.1109/VLSI-SoC57769.2023.10321901.
|
[6] |
JIANG Yuxiao, NI Kai, KÄMPFE T, et al. CSA-CiM: Enhancing multifunctional computing-in-memory with configurable sense amplifiers[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2025, 44(5): 1869–1873. doi: 10.1109/TCAD.2024.3506864.
|
[7] |
LIU Rui, ZHANG Xiaoyu, XIE Zhiwen, et al. FeCrypto: Instruction set architecture for cryptographic algorithms based on FeFET-based in-memory computing[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2023, 42(9): 2889–2902. doi: 10.1109/TCAD.2022.3233736.
|
[8] |
YAN Aibin, CHEN Yu, GAO Zhongyu, et al. FeMPIM: A FeFET-based multifunctional processing-in-memory cell[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2024, 71(4): 2299–2303. doi: 10.1109/TCSII.2023.3331267.
|
[9] |
LALENI N, MÜLLER F, CUÑARRO G, et al. A high-efficiency charge-domain compute-in-memory 1F1C macro using 2-bit FeFET cells for DNN processing[J]. IEEE Journal on Exploratory Solid-State Computational Devices and Circuits, 2024, 10: 153–160. doi: 10.1109/JXCDC.2024.3495612.
|
[10] |
HUANG Yuanyu, HUANG P T, LEE P Y, et al. A new approach for reconfigurable multifunction logic-in-memory using complementary ferroelectric-FET (CFeFET)[J]. IEEE Transactions on Electron Devices, 2023, 70(8): 4497–4500. doi: 10.1109/TED.2023.3287941.
|
[11] |
BREYER E T, MULAOSMANOVIC H, TROMMER J, et al. Compact FeFET circuit building blocks for fast and efficient nonvolatile logic-in-memory[J]. IEEE Journal of the Electron Devices Society, 2020, 8: 748–756. doi: 10.1109/JEDS.2020.2987084.
|
[12] |
RAMANUJAM S and BURLESON W. Reconfiguring the mux-based arbiter PUF using FeFETs[C]. 2021 22nd International Symposium on Quality Electronic Design (ISQED), Santa Clara, USA, 2021: 257–262. doi: 10.1109/ISQED51717.2021.9424328.
|
[13] |
DÜNKEL S, TRENTZSCH M, RICHTER R, et al. A FeFET based super-low-power ultra-fast embedded NVM technology for 22nm FDSOI and beyond[C]. 2017 IEEE International Electron Devices Meeting (IEDM), San Francisco, USA, 2017: 19.7. 1–19.7. 4. doi: 10.1109/IEDM.2017.8268425.
|
[14] |
AZIZ A, GHOSH S, DATTA S, et al. Physics-based circuit-compatible SPICE model for ferroelectric transistors[J]. IEEE Electron Device Letters, 2016, 37(6): 805–808. doi: 10.1109/LED.2016.2558149.
|
[15] |
NI Kai, JERRY M, SMITH J A, et al. A circuit compatible accurate compact model for ferroelectric-FETs[C]. 2018 IEEE Symposium on VLSI Technology, Honolulu, USA, 2018: 131–132. doi: 10.1109/VLSIT.2018.8510622.
|
[16] |
DENG Shan, YIN Guodong, CHAKRABORTY W, et al. A comprehensive model for ferroelectric FET capturing the key behaviors: Scalability, variation, stochasticity, and accumulation[C]. 2020 IEEE Symposium on VLSI Technology, Honolulu, USA, 2020: 1–2. doi: 10.1109/VLSITechnology18217.2020.9265014.
|
[17] |
YIN Xunzhao, CHEN Xiaoming, NIEMIER M, et al. Ferroelectric FETs-based nonvolatile logic-in-memory circuits[J]. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2019, 27(1): 159–172. doi: 10.1109/TVLSI.2018.2871119.
|
[18] |
尹勋钊, 岳金山, 黄庆荣, 等. 存算一体电路与跨层次协同设计优化: 从SRAM到铁电晶体管[J]. 中国科学: 信息科学, 2022, 52(4): 612–638. doi: 10.1360/SSI-2021-0420.
YIN Xunzhao, YUE Jinshan, HUANG Qingrong, et al. Computing-in-memory circuits and cross-layer integrated design and optimization: From SRAM to FeFET[J]. SCIENTIA SINICA Informationis, 2022, 52(4): 612–638. doi: 10.1360/SSI-2021-0420.
|
[19] |
CHAKRABORTI S, CHOWDHARY P V, DATTA K, et al. BDD based synthesis of Boolean functions using memristors[C]. 2014 9th International Design and Test Symposium (IDT), Algeries, Algeria, 2014: 136–141. doi: 10.1109/IDT.2014.7038601.
|
[20] |
CHAKRABORTY A, GUPTA P S, SINGH R, et al. BDD-based synthesis approach for in-memory logic realization utilizing Memristor Aided loGIC (MAGIC)[J]. Integration, 2021, 81: 254–267. doi: 10.1016/j.vlsi.2021.08.002.
|
[21] |
刘睿. 基于铁电场效应晶体管的存算一体架构研究[D]. [硕士论文], 湘潭大学, 2022. doi: 10.27426/d.cnki.gxtdu.2022.001474.
LIU Rui. Study on computing-in-memory architecture based on ferroelectric field-effect transistor[D]. [Master dissertation], Xiangtan University, 2022. doi: 10.27426/d.cnki.gxtdu.2022.001474.
|