Citation: | LI Zhe, WANG Ke, WANG Biao, ZHAO Ziqi, LI Yafei, GUO Yibo, HU Yazhou, WANG Hua, LV Pei, XU Mingliang. Human-Machine Fusion Intelligent Decision-Making: Concepts, Framework, and Applications[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250260 |
[1] |
杨强, 范力欣, 朱军, 等. 可解释人工智能导论[M]. 北京: 电子工业出版社, 2022.
YANG Qiang, FAN Lixin, ZHU Jun, et al. Introduction to Explainable Artificial Intelligence[M]. Beijing: Publishing House of Electronics Industry, 2022.
|
[2] |
刘伟, 谭文辉, 刘欣. 人机环境系统智能: 超越人机融合[M]. 北京: 科学出版社, 2024.
LIU Wei, TAN Wenhui, and LIU Xin. Human-Machine Environment System Intelligence: Beyond Human-Machine Fusion[M]. Beijing: Science Press, 2024.
|
[3] |
LICKLIDER J C R. Man-computer symbiosis[J]. RE Transactions on Human Factors in Electronics, 1960, HFE-1(1): 4–11. doi: 10.1109/THFE2.1960.4503259.
|
[4] |
CLYNES M E and KLINE N S. Cyborgs and space[J]. Astronautics, 1960, 14(9): 26–27.
|
[5] |
DREYFUS H. What Computers Can’t Do[M]. New York: HarperCollins Publishers, 1978.
|
[6] |
BARAN P. The future computer utility[J]. The Public Interest, 1967, 8: 81–92.
|
[7] |
中国系统工程学会. 钱学森同志关于人-机-环境系统工程的讲话[C]. 第一届全国人-机-环境系统工程学术会议论文集, 北京, 1993: 1–2.
Chinese Society of Systems Engineering. Speech by comrade Qian Xuesen on man-machine-environment system engineering (MMESE)[C]. The First National Conference on MMESE, Beijing, China, 1993: 1–2.
|
[8] |
ENDSLEY M R. Toward a theory of situation awareness in dynamic systems[J]. Human Factors, 1995, 37(1): 32–64. doi: 10.1518/001872095779049543.
|
[9] |
POMERLEAU D A. ALVINN: An autonomous land vehicle in a neural network[C]. The 2nd International Conference on Neural Information Processing Systems, Denver, Colorado, USA, 1988: 305–313.
|
[10] |
WEISER M. The computer for the 21st century[J]. Scientific American, 1991, 265(3): 94–104. doi: 10.1038/scientificamerican0991-94.
|
[11] |
WOLPAW J R, MCFARLAND D J, NEAT G W, et al. An EEG-based brain-computer interface for cursor control[J]. Electroencephalography and Clinical Neurophysiology, 1991, 78(3): 252–259. doi: 10.1016/0013-4694(91)90040-B.
|
[12] |
HEWETT T T, BAECKER R, CARD S, et al. ACM SIGCHI Curricula for Human-Computer Interaction[M]. New York, NY: Association for Computing Machinery, 1992. doi: 10.1145/2594128.
|
[13] |
BIRBAUMER N, GHANAYIM N, HINTERBERGER T, et al. A spelling device for the paralysed[J]. Nature, 1999, 398(6725): 297–298. doi: 10.1038/18581.
|
[14] |
BENDERIUS O, BERGER C, and LUNDGREN V M. The best rated human-machine interface design for autonomous vehicles in the 2016 grand cooperative driving challenge[J]. IEEE Transactions on Intelligent Transportation Systems, 2018, 19(4): 1302–1307. doi: 10.1109/TITS.2017.2749970.
|
[15] |
NICOLELIS M A L. Brain-machine interfaces to restore motor function and probe neural circuits[J]. Nature Reviews Neuroscience, 2003, 4(5): 417–422. doi: 10.1038/nrn1105.
|
[16] |
HINTON G E and SALAKHUTDINOV R R. Reducing the dimensionality of data with neural networks[J]. Science, 2006, 313(5786): 504–507. doi: 10.1126/science.1127647.
|
[17] |
TONONI G. Consciousness as integrated information: A provisional manifesto[J]. The Biological Bulletin, 2008, 215(3): 216–242. doi: 10.2307/25470707.
|
[18] |
FERRUCCI D, BROWN E, CHU-CARROLL J, et al. Building Watson: An overview of the DeepQA project[J]. AI Magazine, 2010, 31(3): 59–79. doi: 10.1609/aimag.v31i3.2303.
|
[19] |
吴朝晖, 郑能干. 混合智能: 人工智能的新方向[J]. 中国计算机学会通讯, 2012, 8(1): 59–64.
WU Zhaohui and ZHENG Nenggan. Cyborg intelligence: The new direction of artificial intelligence[J]. Communications of the CCF, 2012, 8(1): 59–64.
|
[20] |
WU Zhaohui, ZHOU Yongdi, SHI Zhongzhi, et al. Cyborg intelligence: Recent progress and future directions[J]. IEEE Intelligent Systems, 2016, 31(6): 44–50. doi: 10.1109/MIS.2016.105.
|
[21] |
PANDEY A K and GELIN R. A mass-produced sociable humanoid robot: Pepper: The first machine of its kind[J]. IEEE Robotics & Automation Magazine, 2018, 25(3): 40–48. doi: 10.1109/MRA.2018.2833157.
|
[22] |
SILVER D, SCHRITTWIESER J, SIMONYAN K, et al. Mastering the game of go without human knowledge[J]. Nature, 2017, 550(7676): 354–359. doi: 10.1038/nature24270.
|
[23] |
ABBINK D A, CARLSON T, MULDER M, et al. A topology of shared control systems——finding common ground in diversity[J]. IEEE Transactions on Human-Machine Systems, 2018, 48(5): 509–525. doi: 10.1109/THMS.2018.2791570.
|
[24] |
MARJANINEJAD A, URBINA-MELÉNDEZ D, COHN B A, et al. Autonomous functional movements in a tendon-driven limb via limited experience[J]. Nature Machine Intelligence, 2019, 1(3): 144–154. doi: 10.1038/s42256-019-0029-0.
|
[25] |
LOPATTO E. Elon Musk unveils Neuralink’s plans for brain-reading ‘threads’ and a robot to insert them[EB/OL]. https://www.theverge.com/2019/7/16/20697123/elon-musk-neuralink-brain-readingthread-robot, 2024.
|
[26] |
WU Fei, LU Cewu, ZHU Mingjie, et al. Towards a new generation of artificial intelligence in China[J]. Nature Machine Intelligence, 2020, 2(6): 312–316. doi: 10.1038/s42256-020-0183-4.
|
[27] |
OpenAI. GPT-4 technical report[J]. arXiv: 2303.08774, 2023.
|
[28] |
BAI Jinze, BAI Shuai, CHU Yunfei, et al. Qwen technical report[J]. arXiv: 2309.16609, 2023.
|
[29] |
OpenAI. Video generation models as world simulators[EB/OL]. https://openai.com/index/video-generation-models-as-world-simulators/, 2024.
|
[30] |
DeepSeek-AI. DeepSeek-R1: Incentivizing reasoning capability in LLMs via reinforcement learning[J]. arXiv: 2501.12948, 2025.
|
[31] |
STONE P, BROOK R, BRYNJOLFSSON E, et al. Artificial intelligence and life in 2030: The one hundred year study on artificial intelligence[J]. arXiv: 2211.06318, 2022.
|
[32] |
杨晓楠, 房浩楠, 李建国, 等. 智能制造中的人-信息-物理系统协同的人因工程[J]. 中国机械工程, 2023, 34(14): 1710–1722,1740. doi: 10.3969/j.issn.1004-132X.2023.14.008.
YANG Xiaonan, FANG Haonan, LI Jianguo, et al. Human factor engineering for human-cyber-physical system collaboration in intelligent manufacturing[J]. China Mechanical Engineering, 2023, 34(14): 1710–1722,1740. doi: 10.3969/j.issn.1004-132X.2023.14.008.
|
[33] |
O’CALLAGHAN M. Decision Intelligence: Human-Machine Integration for Decision-Making[M]. New York: Chapman and Hall/CRC, 2023: 167–194. doi: 10.1201/b23322.
|
[34] |
CHAUHAN H, JANG Y, and JEONG I. Predicting human trust in human-robot collaborations using machine learning and psychophysiological responses[J]. Advanced Engineering Informatics, 2024, 62: 102720. doi: 10.1016/j.aei.2024.102720.
|
[35] |
DUAN Ya, CAI Yandong, PENG Ran, et al. Research on interaction and trust theory model for cockpit human-machine fusion intelligence[J]. Frontiers in Neuroscience, 2024, 18: 1352736. doi: 10.3389/fnins.2024.1352736.
|
[36] |
MOYLE S, MARTIN A, and ALLOTT N. XAI human-machine collaboration applied to network security[J]. Frontiers in Computer Science, 2024, 6: 1321238. doi: 10.3389/fcomp.2024.1321238.
|
[37] |
SAARILUOMA P, MYLLYLÄ M, KARVONEN A, et al. A human digital twin for the m-machine[J]. Discover Artificial Intelligence, 2024, 4(1): 61. doi: 10.1007/s44163-024-00164-x.
|
[38] |
陈能成, 张岩. 人机融合智能与数字孪生城市[J]. 中国人工智能学会通讯, 2022, 12(8): 36–41.
CHEN Nengcheng and ZHANG Yan. Human-machine integration intelligence and digital twin city[J]. Communications of the CCF, 2022, 12(8): 36–41.
|
[39] |
梅宏, 曹东刚, 谢涛. 泛在操作系统: 面向人机物融合泛在计算的新蓝海[J]. 中国科学院院刊, 2022, 37(1): 30–37. doi: 10.16418/j.issn.1000-3045.20211117009.
MEI Hong, CAO Donggang, and XIE Tao. Ubiquitous operating system: Toward the blue ocean of human-cyber-physical ternary ubiquitous computing[J]. Bulletin of Chinese Academy of Sciences, 2022, 37(1): 30–37. doi: 10.16418/j.issn.1000-3045.20211117009.
|
[40] |
XIANG Chengguan and YU Zhen. Human-machine hybrid augmented intelligence: Human-machine relationship, collaboration and mutual enhancement[C]. 2023 China Automation Congress (CAC), Chongqing, China, 2023: 7471–7478. doi: 10.1109/CAC59555.2023.10451218.
|
[41] |
张立华, 杨鼎康, 翟鹏, 等. 人机融合智能研究现状与展望[J]. 中国人工智能学会通讯, 2022, 12(8): 19–22.
ZHANG Lihua, YANG Dingkang, ZHAI Peng, et al. Current status and prospects of human-machine fusion intelligence research[J]. Communications of the CCF, 2022, 12(8): 19–22.
|
[42] |
SHI Feifei, ZHOU Fang, LIU Hong, et al. Survey and tutorial on hybrid human-artificial intelligence[J]. Tsinghua Science and Technology, 2023, 28(3): 486–499. doi: 10.26599/TST.2022.9010022.
|
[43] |
於志文, 郭斌. 人机共融智能[J]. 中国计算机学会通讯, 2017, 13(12): 64–68.
YU Zhiwen and GUO Bin. Human machine integration intelligence[J]. Communications of the CCF, 2017, 13(12): 64–68.
|
[44] |
HARRIS M. NTSB investigation into deadly Uber self-driving car crash reveals lax attitude toward safety[R]. IEEE Spectrum, 2019.
|
[45] |
史元春, 喻纯, 石伟男. 从普适计算到人机境融合计算[J]. 中国计算机学会通讯, 2023, 19(5): 10–17.
SHI Yuanchun, YU Chun, and SHI Weinan. From ubiquitous computing to human-machine environment fusion computing[J]. Communications of the CCF, 2023, 19(5): 10–17.
|
[46] |
TOCCHETTI A, CORTI L, BALAYN A, et al. A. I. Robustness: A human-centered perspective on technological challenges and opportunities[J]. ACM Computing Surveys, 2025, 57(6): 141. doi: 10.1145/3665926.
|
[47] |
LEE J, ABE G, SATO K, et al. Developing human-machine trust: Impacts of prior instruction and automation failure on driver trust in partially automated vehicles[J]. Transportation Research Part F: Traffic Psychology and Behaviour, 2021, 81: 384–395. doi: 10.1016/j.trf.2021.06.013.
|
[48] |
STEINBERG A N and BOWMAN C L. Revisions to the JDL Data Fusion Model[M]. LIGGINS II M, HALL D, LLINAS J. Handbook of Multisensor Data Fusion. Boca Raton: CRC Press, 2017: 65–88.
|
[49] |
ZHAO Fei, ZHANG Chengcui, and GENG Baocheng. Deep multimodal data fusion[J]. ACM Computing Surveys, 2024, 56(9): 216. doi: 10.1145/3649447.
|
[50] |
GUO Yuan, ZHOU Jian, LI Xicheng, et al. A review of crowdsourcing update methods for high-definition maps[J]. ISPRS International Journal of Geo-Information, 2024, 13(3): 104. doi: 10.3390/ijgi13030104.
|
[51] |
GAO Qing, ZHANG Xin, and PANG Wenrao. Fast and accurate hand visual detection by using a spatial-channel attention SSD for hand-based space robot teleoperation[J]. International Journal of Aerospace Engineering, 2022, 2022(1): 3396811. doi: 10.1155/2022/3396811.
|
[52] |
DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16x16 words: Transformers for image recognition at scale[C]. The 9th International Conference on Learning Representations, 2021.
|
[53] |
ABDOLRAHMANI A, HOWES GUPTA M, VADER M L, et al. Towards more transactional voice assistants: Investigating the potential for a multimodal voice-activated indoor navigation assistant for blind and sighted travelers[C]. 2021 CHI Conference on Human Factors in Computing Systems, Yokohama, Japan, 2021: 495. doi: 10.1145/3411764.3445638.
|
[54] |
ZHANG Hongzhi and SHAFIQ M O. Survey of transformers and towards ensemble learning using transformers for natural language processing[J]. Journal of Big Data, 2024, 11(1): 25. doi: 10.1186/s40537-023-00842-0.
|
[55] |
LIU Siru, WRIGHT A P, PATTERSON B L, et al. Using AI-generated suggestions from ChatGPT to optimize clinical decision support[J]. Journal of the American Medical Informatics Association, 2023, 30(7): 1237–1245. doi: 10.1093/jamia/ocad072.
|
[56] |
许未晴, 陈磊, 隋秀峰, 等. 脑机接口——脑信息读取与脑活动调控技术[J]. 科学通报, 2023, 68(8): 927–943. doi: 10.1360/TB-2022-0338.
XU Weiqing, CHEN Lei, SUI Xiufeng, et al. Brain-computer interface—brain information reading and activity control[J]. Chinese Science Bulletin, 2023, 68(8): 927–943. doi: 10.1360/TB-2022-0338.
|
[57] |
ROBINSON A K, VENKATESH P, BORING M J, et al. Very high density EEG elucidates spatiotemporal aspects of early visual processing[J]. Scientific Reports, 2017, 7(1): 16248. doi: 10.1038/s41598-017-16377-3.
|
[58] |
陈豫生, 张琴, 熊蔡华. 截瘫助行外骨骼研究综述: 从拟人设计依据到外骨骼研究现状[J]. 机器人, 2021, 43(5): 585–605. doi: 10.13973/j.cnki.robot.200549.
CHEN Yusheng, ZHANG Qin, and XIONG Caihua. From anthropomorphic design basis to exoskeleton research status: A review on walking assist exoskeletons for paraplegics[J]. Robot, 2021, 43(5): 585–605. doi: 10.13973/j.cnki.robot.200549.
|
[59] |
JIANG Xiangyang, WANG Dakai, BI Kunpeng, et al. MSHP3D: Multi-stage cross-modal fusion based on hybrid perception for indoor 3D object detection[J]. Information Fusion, 2024, 112: 102591. doi: 10.1016/j.inffus.2024.102591.
|
[60] |
BALTRUSAITIS T, AHUJA C, and MORENCY L P. Multimodal machine learning: A survey and taxonomy[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019, 41(2): 423–443. doi: 10.1109/TPAMI.2018.2798607.
|
[61] |
CIAMARRA A, BECATTINI F, SEIDENARI L, et al. FLODCAST: Flow and depth forecasting via multimodal recurrent architectures[J]. Pattern Recognition, 2024, 150: 110337. doi: 10.1016/j.patcog.2024.110337.
|
[62] |
TSAI Y H H, BAI Shaojie, LIANG P P, et al. Multimodal transformer for unaligned multimodal language sequences[C]. The 57th Conference of the Association for Computational Linguistics, Florence, Italy, 2019: 6558–6569. doi: 10.18653/v1/P19-1656.
|
[63] |
OVALLE J E A, SOLORIO T, MONTES-Y-GÓMEZ M, et al. Gated multimodal units for information fusion[C]. The 5th International Conference on Learning Representations, Toulon, France, 2017.
|
[64] |
QIANG Haopeng, WAN Yuan, XIANG Lun, et al. Deep semantic similarity adversarial hashing for cross-modal retrieval[J]. Neurocomputing, 2020, 400: 24–33. doi: 10.1016/j.neucom.2020.03.032.
|
[65] |
LU Xu, LIU Li, NING Lixin, et al. Multi-facet weighted asymmetric multi-modal hashing based on latent semantic distribution[J]. IEEE Transactions on Multimedia, 2024, 26: 7307–7320. doi: 10.1109/tmm.2024.3363664.
|
[66] |
陈建明, 李定鲣, 曾祥津, 等. 一种跨模态光学信息交互和模板动态更新的RGBT目标跟踪方法[J]. 光学学报, 2024, 44(7): 0715001. doi: 10.3788/AOS231907.
CHEN Jianming, LI Dingjian, ZENG Xiangjin, et al. Cross-modal optical information interaction and template dynamic update for RGBT target tracking method[J]. Acta Optica Sinica, 2024, 44(7): 0715001. doi: 10.3788/AOS231907.
|
[67] |
AN Jisu, LEE J, LEE J, et al. Towards LLM-centric multimodal fusion: A survey on integration strategies and techniques[J]. arXiv: 2506.04788, 2025.
|
[68] |
HWANG J J, XU Runsheng, LIN H, et al. EMMA: End-to-end multimodal model for autonomous driving[J]. Transactions on Machine Learning Research, 2025, 2025.
|
[69] |
Gemini Team Google. Gemini 1.5: Unlocking multimodal understanding across millions of tokens of context[J]. arXiv: 2403.05530, 2024.
|
[70] |
ZHU Linan, ZHU Zhechao, ZHANG Chenwei, et al. Multimodal sentiment analysis based on fusion methods: A survey[J]. Information Fusion, 2023, 95: 306–325. doi: 10.1016/j.inffus.2023.02.028.
|
[71] |
JAHN L L F, PARK S, LIM Y, et al. Enhancing lane detection with a lightweight collaborative late fusion model[J]. Robotics and Autonomous Systems, 2024, 175: 104680. doi: 10.1016/j.robot.2024.104680.
|
[72] |
GUARRASI V, AKSU F, CARUSO C M, et al. A systematic review of intermediate fusion in multimodal deep learning for biomedical applications[J]. Image and Vision Computing, 2025, 158: 105509. doi: 10.1016/j.imavis.2025.105509.
|
[73] |
YE Jiancheng, HAI Jiarui, SONG Jiacheng, et al. Multimodal data hybrid fusion and natural language processing for clinical prediction models[J]. AMIA Summits on Translational Science Proceedings, 2024, 2024: 191–200.
|
[74] |
TRENDE A, UNNI A, JABLONSKI M, et al. Driver’s turning intent recognition model based on brain activation and contextual information[J]. Frontiers in Neuroergonomics, 2022, 3: 956863. doi: 10.3389/fnrgo.2022.956863.
|
[75] |
RADFORD A, KIM J W, HALLACY C, et al. Learning transferable visual models from natural language supervision[C]. The 38th International Conference on Machine Learning, 2021: 8748–8763.
|
[76] |
GHOSH S, KUMAR S, SETH A, et al. GAMA: A large audio-language model with advanced audio understanding and complex reasoning abilities[C]. 2024 Conference on Empirical Methods in Natural Language Processing, Miami, USA, 2024: 6288–6313.
|
[77] |
王玉虎, 刘伟. 一种基于人机融合的态势认知模型[J]. 指挥与控制学报, 2023, 9(1): 76–84. doi: 10.3969/j.issn.2096-0204.2023.01.0076.
WANG Yuhu and LIU Wei. A situation cognition model based on human-machine hybrid fusion[J]. Journal of Command and Control, 2023, 9(1): 76–84. doi: 10.3969/j.issn.2096-0204.2023.01.0076.
|
[78] |
HUANG Chao, LV Chen, HANG Peng, et al. Human-machine adaptive shared control for safe driving under automation degradation[J]. IEEE Intelligent Transportation Systems Magazine, 2022, 14(2): 53–66. doi: 10.1109/MITS.2021.3065382.
|
[79] |
HUANG Chao, HUANG Hailong, ZHANG Junzhi, et al. Human-machine cooperative trajectory planning and tracking for safe automated driving[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(8): 12050–12063. doi: 10.1109/TITS.2021.3109596.
|
[80] |
WOLF A, FACKLER K, REULBACH M, et al. Computer aided ergonomics: Evaluation study of a interaction model for digital human models[J]. Proceedings of the Design Society, 2022, 2: 663–672. doi: 10.1017/pds.2022.68.
|
[81] |
于景元. 钱学森关于开放的复杂巨系统的研究[J]. 系统工程理论与实践, 1992, 12(5): 8–12. doi: 10.12011/1000-6788(1992)5-106514.
YU Jingyuan. Qian Xuesen’s research on open complex giant systems[J]. Systems Engineering-Theory & Practice, 1992, 12(5): 8–12. doi: 10.12011/1000-6788(1992)5-106514.
|
[82] |
WU Huaining, ZHANG Xiumei, and LI Ruiguo. Synthesis with guaranteed cost and less human intervention for human-in-the-loop control systems[J]. IEEE Transactions on Cybernetics, 2022, 52(8): 7541–7551. doi: 10.1109/TCYB.2020.3041033.
|
[83] |
ZHOU Ji, ZHOU Yanhong, WANG Baicun, et al. Human-cyber-physical systems (HCPSs) in the context of new-generation intelligent manufacturing[J]. Engineering, 2019, 5(4): 624–636. doi: 10.1016/j.eng.2019.07.015.
|
[84] |
NIKITIN A. Probabilistic methods for predictive maintenance and beyond: Graph and human-in-the-loop machine learning[D]. [Ph. D. dissertation], Aalto University, 2024.
|
[85] |
ZHENG Nanning, LIU Ziyi, REN Pengju, et al. Hybrid-augmented intelligence: Collaboration and cognition[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(2): 153–179. doi: 10.1631/fitee.1700053.
|
[86] |
郑南宁. 人工智能新时代[J]. 智能科学与技术学报, 2019, 1(1): 1–3. doi: 10.11959/j.issn.2096-6652.201914.
ZHENG Nanning. The new era of artificial intelligence[J]. Chinese Journal of Intelligent Science and Technology, 2019, 1(1): 1–3. doi: 10.11959/j.issn.2096-6652.201914.
|
[87] |
SHI Zijing, FANG Meng, CHEN Ling, et al. Human-guided moral decision making in text-based games[C]. The 38th AAAI Conference on Artificial Intelligence, Vancouver, Canada, 2024: 21574–21582. doi: 10.1609/aaai.v38i19.30155.
|
[88] |
龙升照, 姜淇远, 何开源, 等. 人-机系统中人的模糊控制模型[J]. 宇航学报, 1982(2): 12–17.
LONG Shengzhao, JIANG Qiyuan, HE Kaiyuan, et al. Human fuzzy control model in man-machine systems[J]. Journal of Astronautics, 1982(2): 12–17.
|
[89] |
KVAM P D. The Tweedledum and Tweedledee of dynamic decisions: Discriminating between diffusion decision and accumulator models[J]. Psychonomic Bulletin & Review, 2024, 32: 588–613. doi: 10.31234/osf.io/7bsc4.
|
[90] |
HELLMANN S, ZEHETLEITNER M, and RAUSCH M. Simultaneous modeling of choice, confidence, and response time in visual perception[J]. Psychological Review, 2023, 130(6): 1521–1543. doi: 10.1037/rev0000411.
|
[91] |
LIU Pengfei, ZHAO Jing, ZHANG Fanlei, et al. Modeling decision-making process of drivers during yellow signal phase at intersections based on drift–diffusion model[J]. Transportation Research Part F: Traffic Psychology and Behaviour, 2024, 105: 368–384. doi: 10.1016/j.trf.2024.07.020.
|
[92] |
ZARE M, KEBRIA P M, KHOSRAVI A, et al. A survey of imitation learning: Algorithms, recent developments, and challenges[J]. IEEE Transactions on Cybernetics, 2024, 54(12): 7173–7186. doi: 10.1109/TCYB.2024.3395626.
|
[93] |
ARORA S and DOSHI P. A survey of inverse reinforcement learning: Challenges, methods and progress[J]. Artificial Intelligence, 2021, 297: 103500. doi: 10.1016/j.artint.2021.103500.
|
[94] |
HUANG Zhiyu, LIU Haochen, WU Jingda, et al. Conditional predictive behavior planning with inverse reinforcement learning for human-like autonomous driving[J]. IEEE Transactions on Intelligent Transportation Systems, 2023, 24(7): 7244–7258. doi: 10.1109/TITS.2023.3254579.
|
[95] |
LUO Dongwen. Optimizing load scheduling in power grids using reinforcement learning and Markov decision processes[J]. arXiv: 2410.17696, 2024.
|
[96] |
EDDY S R. What is dynamic programming?[J]. Nature Biotechnology, 2004, 22(7): 909–910. doi: 10.1038/nbt0704-909.
|
[97] |
ROBERTAZZI F, VISSANI M, SCHILLACI G, et al. Brain-inspired meta-reinforcement learning cognitive control in conflictual inhibition decision-making task for artificial agents[J]. Neural Networks, 2022, 154: 283–302. doi: 10.1016/j.neunet.2022.06.020.
|
[98] |
MISHRA S. A reinforcement learning approach for training complex decision making models[J]. Journal of AI-Assisted Scientific Discovery, 2022, 2(2): 329–352.
|
[99] |
LI Wenli, WANG Mengxin, LI Lingxi, et al. Game-generative adversarial imitation learning for pedestrian simulation during pedestrian-vehicle interaction[J]. IEEE Transactions on Intelligent Vehicles, 2024, 1–12. doi: 10.1109/TIV.2024.3420943.
|
[100] |
AMIRKHANI A and BARSHOOI A H. Consensus in multi-agent systems: A review[J]. Artificial Intelligence Review, 2022, 55(5): 3897–3935. doi: 10.1007/s10462-021-10097-x.
|
[101] |
HU Yaru, ZHENG Jinhua, ZOU Juan, et al. Dynamic multi-objective optimization algorithm based decomposition and preference[J]. Information Sciences, 2021, 571: 175–190. doi: 10.1016/j.ins.2021.04.055.
|
[102] |
ZHENG Jiaxiao and DE VECIANA G. Modeling and optimization of human-machine interaction processes via the maximum entropy principle[C]. The 57th Annual Allerton Conference on Communication, Control, and Computing, Monticello, USA, 2019: 824–831. doi: 10.1109/ALLERTON.2019.8919959.
|
[103] |
HAQUE M U, DHARMADASA I, SWORNA Z T, et al. “I think this is the most disruptive technology”: Exploring sentiments of ChatGPT early adopters using Twitter data[J]. arXiv: 2212.05856, 2022.
|
[104] |
STIENNON N, OUYANG Long, WU J, et al. Learning to summarize from human feedback[C]. The 34th International Conference on Neural Information Processing System, Vancouver, Canada, 2020: 253.
|
[105] |
OUYANG Long, WU J, JIANG Xu, et al. Training language models to follow instructions with human feedback[C]. The 36th International Conference on Neural Information Processing Systems, New Orleans, USA, 2022: 2011.
|
[106] |
SHAO Zhihong, WANG Peiyi, ZHU Qihao, et al. DeepSeekMath: Pushing the limits of mathematical reasoning in open language models[J]. arXiv: 2402.03300, 2024.
|
[107] |
REN Minglun, CHEN Nengying, and QIU Hui. Human-machine collaborative decision-making: An evolutionary roadmap based on cognitive intelligence[J]. International Journal of Social Robotics, 2023, 15(7): 1101–1114. doi: 10.1007/s12369-023-01020-1.
|
[108] |
ZIEBA S, POLET P, VANDERHAEGEN F, et al. Principles of adjustable autonomy: A framework for resilient human-machine cooperation[J]. Cognition, Technology & Work, 2010, 12(3): 193–203. doi: 10.1007/s10111-009-0134-7.
|
[109] |
ZHAO Zhuoya, ZHAO Feifei, ZHAO Yuxuan, et al. A brain-inspired theory of mind spiking neural network improves multi-agent cooperation and competition[J]. Patterns, 2023, 4(8): 100775. doi: 10.1016/j.patter.2023.100775.
|
[110] |
FENG Xueyang, CHEN Zhiyuan, QIN Yujia, et al. Large language model-based human-agent collaboration for complex task solving[C]. The Association for Computational Linguistics: EMNLP 2024, Miami, USA, 2024: 1336–1357.
|
[111] |
LIU Tao, YOU Hailin, GKIOTSALITIS K, et al. Human-machine collaborative decision-making approach to scheduling customized buses with flexible departure times[J]. Transportation Research Part A: Policy and Practice, 2024, 187: 104184. doi: 10.1016/j.tra.2024.104184.
|
[112] |
ROTHFUß S. Human-Machine Cooperative Decision Making[M]. Karlsruhe: KIT Scientific Publishing, 2022.
|
[113] |
MATTHIES D J C, SCHMIDT S O, HE Yuqi, et al. LoomoRescue: An affordable rescue robot for evacuation situations[C]. The 4th International Conference on Design, Operation and Evaluation of Mobile Communications, Copenhagen, Denmark, 2023: 53–73. doi: 10.1007/978-3-031-35921-7_5.
|
[114] |
BONSIGNORIO F, CERVELLERA C, MACCIÒ D, et al. An imitation learning approach for the control of a low-cost low-accuracy robotic arm for unstructured environments[J]. International Journal of Intelligent Robotics and Applications, 2023, 7(1): 13–30. doi: 10.1007/s41315-022-00262-y.
|
[115] |
董志明, 朱广超, 徐享忠, 等. “人在回路”合成训练仿真总体设计及关键技术研究[J]. 系统仿真学报, 2021, 33(6): 1248–1257. doi: 10.16182/j.issn1004731x.joss.21-0392.
DONG Zhiming, ZHU Guangchao, XU Xiangzhong, et al. Research on the overall design and key technology of "Human in the Loop" synthetic training Simulation[J]. Journal of System Simulation, 2021, 33(6): 1248–1257. doi: 10.16182/j.issn1004731x.joss.21-0392.
|
[116] |
RUAN Wanying, DUAN Haibin, and DENG Yimin. Autonomous maneuver decisions via transfer learning pigeon-inspired optimization for UCAVs in dogfight engagements[J]. IEEE/CAA Journal of Automatica Sinica, 2022, 9(9): 1639–1657. doi: 10.1109/JAS.2022.105803.
|
[117] |
徐友春, 郭宏达, 娄静涛, 等. 无人车集群协同围捕发展现状分析[J]. 电子与信息学报, 2024, 46(2): 456–471. doi: 10.11999/JEIT230122.
XU Youchun, GUO Hongda, LOU Jingtao, et al. Analysis on current development situation of unmanned ground vehicle clusters collaborative pursuit[J]. Journal of Electronics & Information Technology, 2024, 46(2): 456–471. doi: 10.11999/JEIT230122.
|
[118] |
BOURAS C, GKAMAS A, and SALGADO S A K. Long range based IoT search and rescue system, a human-computer interaction preliminary study and implementation[J]. Computer Networks and Communications, 2022, 1(1): 2–16. doi: 10.37256/cnc.1120231753.
|
[119] |
周胜利, 沈寿林, 张国宁, 等. 人机智能融合的陆军智能化作战指挥模型体系[J]. 火力与指挥控制, 2020, 45(3): 34–41. doi: 10.3969/j.issn.1002-0640.2020.03.006.
ZHOU Shengli, SHEN Shoulin, ZHANG Guoning, et al. Research on army intelligent operational command model system based on man-machine intelligence fusion[J]. Fire Control & Command Control, 2020, 45(3): 34–41. doi: 10.3969/j.issn.1002-0640.2020.03.006.
|
[120] |
HUANG Yamin, CHEN Linying, NEGENBORN R R, et al. A ship collision avoidance system for human-machine cooperation during collision avoidance[J]. Ocean Engineering, 2020, 217: 107913. doi: 10.1016/j.oceaneng.2020.107913.
|
[121] |
王荣浩, 文晓, 向峥嵘. 人机融合系统协同与优化方法研究进展[J]. 指挥控制与仿真, 2024, 46(5): 103–113. doi: 10.3969/j.issn.1673-3819.2024.05.014.
WANG Ronghao, WEN Xiao, and XIANG Zhengrong. Research status of collaboration and optimization method for human-machine fusion system[J]. Command Control & Simulation, 2024, 46(5): 103–113. doi: 10.3969/j.issn.1673-3819.2024.05.014.
|
[122] |
李超超, 程兰惠, 杨赛赛, 等. 暗态势计算: 概念、方法与应用[J]. 计算机辅助设计与图形学学报, 2025, 37(4): 568–582. doi: 10.3724/SP.J.1089.2023-00341.
LI Chaochao, CHENG Lanhui, YANG Saisai, et al. Dark situation evaluating: Concepts, methods, and applications[J]. Journal of Computer-Aided Design & Computer Graphics, 2025, 37(4): 568–582. doi: 10.3724/SP.J.1089.2023-00341.
|
[123] |
李超超, 邵文龙, 吕培, 等. 人机协同决策的异质多智能体路径规划[J/OL]. https://link.cnki.net/urlid/11.2925.tp.20250526.1717.002, 2025.
LI Chaochao, SHAO Wenlong, LV Pei, et al. Heterogeneous multi-agent path planning with human-machine collaborative decision-making[J/OL]. https://link.cnki.net/urlid/11.2925.tp.20250526.1717.002, 2025.
|
[124] |
王可, 刘奕阳, 杨杰, 等. 基于自适应特征增强和融合的舰载机着舰拉制状态识别[J]. 上海交通大学学报, 2025, 59(2): 274–282. doi: 10.16183/j.cnki.jsjtu.2023.263.
WANG Ke, LIU Yiyang, YANG Jie, et al. Landing state recognition of carrier-based aircraft based on adaptive feature enhancement and fusion[J]. Journal of Shanghai Jiao Tong University, 2025, 59(2): 274–282. doi: 10.16183/j.cnki.jsjtu.2023.263.
|
[125] |
王可, 徐明亮, 李亚飞, 等. 一种面向航空母舰甲板运动状态预估的鲁棒学习模型[J]. 自动化学报, 2024, 50(9): 1785–1793. doi: 10.16383/j.aas.c210664.
WANG Ke, XU Mingliang, LI Yafei, et al. A robust learning model for deck motion prediction of aircraft carrier[J]. Acta Automatica Sinica, 2024, 50(9): 1785–1793. doi: 10.16383/j.aas.c210664.
|
[126] |
李亚飞, 高磊, 蒿宏杰, 等. 舰载机保障作业人机协同决策方法[J]. 中国科学: 信息科学, 2023, 53(12): 2493–2510. doi: 10.1360/SSI-2022-0403.
LI Yafei, GAO Lei, HAO Hongjie, et al. Human machine collaborative decision-making for carrier aircraft support operations[J]. Scientia Sinica Informationis, 2023, 53(12): 2493–2510. doi: 10.1360/SSI-2022-0403.
|
[127] |
AMARILLO A, SANCHEZ E, CACERES J, et al. Collaborative human-robot interaction interface: Development for a spinal surgery robotic assistant[J]. International Journal of Social Robotics, 2021, 13(6): 1473–1484. doi: 10.1007/s12369-020-00733-x.
|
[128] |
CHEN Xiaoshi, GONG Li, ZHENG Lirong, et al. Soft exoskeleton glove for hand assistance based on human-machine interaction and machine learning[C]. 2020 IEEE International Conference on Human-Machine Systems (ICHMS), Rome, Italy, 2020: 1–6. doi: 10.1109/ICHMS49158.2020.9209381.
|
[129] |
LI H Y, NURADHA T, XAVIER S A, et al. Human-micromanipulator cooperation using a variable admittance controller[J]. Science China Information Sciences, 2019, 62(5): 50204. doi: 10.1007/s11432-018-9663-1.
|
[130] |
GARCIA-MORENO F M, BERMUDEZ-EDO M, RODRÍGUEZ-FÓRTIZ M J, et al. A CNN-LSTM deep learning classifier for motor imagery EEG detection using a low-invasive and low-cost BCI headband[C]. 2020 16th International Conference on Intelligent Environments (IE), Madrid, Spain, 2020: 84–91. doi: 10.1109/IE49459.2020.9155016.
|
[131] |
PAVÓN-PULIDO N, LÓPEZ-RIQUELME J A, and FELIÚ-BATLLE J J. IoT architecture for smart control of an exoskeleton robot in rehabilitation by using a natural user interface based on gestures[J]. Journal of Medical Systems, 2020, 44(9): 144. doi: 10.1007/s10916-020-01602-w.
|
[132] |
CAI Hengrui, SHI Chengchun, SONG Rui, et al. Jump interval-learning for individualized decision making with continuous treatments[J]. The Journal of Machine Learning Research, 2023, 24(1): 140.
|
[133] |
袁敏, 陈卓, 徐冰青. 面向数据特征的人机物融合服务分派方法[J]. 软件学报, 2021, 32(11): 3404–3422. doi: 10.13328/j.cnki.jos.006090.
YUAN Min, CHEN Zhuo, and XU Bingqing. Human-cyber-physical services dispatch approach for data characteristics[J]. Journal of Software, 2021, 32(11): 3404–3422. doi: 10.13328/j.cnki.jos.006090.
|
[134] |
FANG Zhenwu, WANG Jinxiang, WANG Zejiang, et al. Human-machine shared control for path following considering driver fatigue characteristics[J]. IEEE Transactions on Intelligent Transportation Systems, 2024, 25(7): 7250–7264. doi: 10.1109/TITS.2023.3347439.
|
[135] |
WU Jian, ZHANG Junda, TIAN Yang, et al. A novel adaptive steering torque control approach for human-machine cooperation autonomous vehicles[J]. IEEE Transactions on Transportation Electrification, 2021, 7(4): 2516–2529. doi: 10.1109/TTE.2021.3083679.
|
[136] |
HAN Jiayi, ZHAO Jian, ZHU Bing, et al. Adaptive steering torque coupling framework considering conflict resolution for human-machine shared driving[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(8): 10983–10995. doi: 10.1109/TITS.2021.3098466.
|
[137] |
WANG Lingguang, FERNANDEZ C, and STILLER C. High-level decision making for automated highway driving via behavior cloning[J]. IEEE Transactions on Intelligent Vehicles, 2023, 8(1): 923–935. doi: 10.1109/TIV.2022.3169207.
|
[138] |
WU Jingda, ZHANG Zhiyu, TIAN Zhongxu, et al. Toward human-in-the-loop AI: Enhancing deep reinforcement learning via real-time human guidance for autonomous driving[J]. Engineering, 2023, 21: 75–91. doi: 10.1016/j.eng.2022.05.017.
|
[139] |
WANG Jiarong, BI Luzheng, and FEI Weijie. Multitask-oriented brain-controlled intelligent vehicle based on human-machine intelligence integration[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2023, 53(4): 2510–2521. doi: 10.1109/TSMC.2022.3212744.
|
[140] |
MOHAMMED K, ABDELHAFID M, KAMAL K, et al. Intelligent driver monitoring system: An Internet of things-based system for tracking and identifying the driving behavior[J]. Computer Standards & Interfaces, 2023, 84: 103704. doi: 10.1016/j.csi.2022.103704.
|
[141] |
DONG Na, LI Xianzheng, and WU Zhiqiang. On integrated lateral and longitudinal control of brain-controlled vehicles[J]. Neurocomputing, 2024, 597: 127957. doi: 10.1016/j.neucom.2024.127957.
|
[142] |
MA Biao, LIU Yulong, NA Xiaoxiang, et al. A shared steering controller design based on steer-by-wire system considering human-machine goal consistency[J]. Journal of the Franklin Institute, 2019, 356(8): 4397–4419. doi: 10.1016/j.jfranklin.2018.12.028.
|
[143] |
HU Weiming, LI Xu, HU Jinchao, et al. A safe driving decision-making methodology based on cascade imitation learning network for automated commercial vehicles[J]. IEEE Sensors Journal, 2023, 23(11): 11285–11295. doi: 10.1109/JSEN.2023.3256704.
|
[144] |
LIU Yiyang, WANG Ke, and CHENG Xinle. Human-machine collaborative classification model for industrial product defect[C]. The 2021 17th International Conference on Computational Intelligence and Security (CIS), Chengdu, China, 2021: 141–145. doi: 10.1109/CIS54983.2021.00038.
|
[145] |
蔡恒进, 蔡天琪, 耿嘉伟. 人机智能融合的区块链系统[M]. 武汉: 华中科技大学出版社, 2019.
CAI Hengjin, CAI Tianqi, and GENG Jiawei. A Blockchain System Integrating Human-Machine Intelligence[M]. Wuhan: Huazhong University of Science and Technology Press, 2019.
|
[146] |
MUSIĆ S and HIRCHE S. Control sharing in human-robot team interaction[J]. Annual Reviews in Control, 2017, 44: 342–354. doi: 10.1016/j.arcontrol.2017.09.017.
|
[147] |
HASHEMI-PETROODI S E, THEVENIN S, KOVALEV S, et al. Operations management issues in design and control of hybrid human-robot collaborative manufacturing systems: A survey[J]. Annual Reviews in Control, 2020, 49: 264–276. doi: 10.1016/j.arcontrol.2020.04.009.
|
[148] |
GEBRU B, ZELEKE L, BLANKSON D, et al. A review on human-machine trust evaluation: Human-centric and machine-centric perspectives[J]. IEEE Transactions on Human-Machine Systems, 2022, 52(5): 952–962. doi: 10.1109/THMS.2022.3144956.
|
[149] |
HUANG Qingyang, GUO Mingyang, WEI Yuning, et al. Influence of automation level of human-machine system on operators’ mental load[J]. Journal of Safety and Sustainability, 2024, 1(1): 42–52. doi: 10.1016/j.jsasus.2023.12.001.
|