Citation: | PAN Xin, GAO Jian. Constructing Two Classes of Maximum Distance Separable Entanglement-Assisted Quantum Error-Correcting Codes by Using Twisted Generalized Reed-Solomon Codes[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250258 |
[1] |
GISIN N, RIBORDY G, TITTEL W, et al. Quantum cryptography[J]. Reviews of Modern Physics, 2002, 74(1): 145–195. doi: 10.1103/RevModPhys.74.145.
|
[2] |
NI Zhongchu, LI Sai, DENG Xiaowei, et al. Beating the break-even point with a discrete-variable-encoded logical qubit[J]. Nature, 2023, 616(7955): 56–60. doi: 10.1038/s41586-023-05784-4.
|
[3] |
吕欣, 马智, 冯登国. 基于量子Calderbank-Shor-Steane纠错码的量子安全直接通信[J]. 软件学报, 2006, 17(3): 509–515. doi: 10.1360/jos170509.
LÜ Xin, MA Zhi, and FENG Dengguo. Quantum secure direct communication using quantum Calderbank-Shor-Steane error correcting codes[J]. Journal of Software, 2006, 17(3): 509–515. doi: 10.1360/jos170509.
|
[4] |
王玉, 开晓山, 朱士信. 一种 $ {2}^{m} $元域上量子纠错码的构造方法[J]. 电子与信息学报, 2023, 45(5): 1731–1736. doi: 10.11999/JEIT221145.
WANG Yu, KAI Xiaoshan, and ZHU Shixin. A construction method of quantum error-correcting codes over $ {{\mathrm{F}}_{{2}^{m}}}^{} $[J]. Journal of Electronics & Information Technology, 2023, 45(5): 1731–1736. doi: 10.11999/JEIT221145.
|
[5] |
CHEN Bocong, LING San, and ZHANG Guanghui. Application of constacyclic codes to quantum MDS codes[J]. IEEE Transactions on Information Theory, 2015, 61(3): 1474–1484. doi: 10.1109/TIT.2015.2388576.
|
[6] |
BRUN T, DEVETAK I, and HSIEH M H. Correcting quantum errors with entanglement[J]. Science, 2006, 314(5798): 436–439. doi: 10.1126/science.1131563.
|
[7] |
LUO Gaojun, CAO Xiwang, and CHEN Xiaojing. MDS codes with hulls of arbitrary dimensions and their quantum error correction[J]. IEEE Transactions on Information Theory, 2019, 65(5): 2944–2952. doi: 10.1109/TIT.2018.2874953.
|
[8] |
JIANG Wan, ZHU Shixin, and CHEN Xiaojing. Optimal entanglement-assisted quantum codes with larger minimum distance[J]. IEEE Communications Letters, 2021, 25(1): 45–48. doi: 10.1109/LCOMM.2020.3025012.
|
[9] |
BISWAS S and BHAINTWAL M. A new construction of quantum codes from quasi-cyclic codes over finite fields[J]. Indian Journal of Pure and Applied Mathematics, 2023, 54(2): 375–388. doi: 10.1007/s13226-022-00259-0.
|
[10] |
CHEN Xiaojing, ZHU Shixin, and JIANG Wan. Cyclic codes and some new entanglement-assisted quantum MDS codes[J]. Designs, Codes and Cryptography, 2021, 89(11): 2533–2551. doi: 10.1007/s10623-021-00935-y.
|
[11] |
GUENDA K, JITMAN S, and GULLIVER T A. Constructions of good entanglement-assisted quantum error correcting codes[J]. Designs, Codes and Cryptography, 2018, 86(1): 121–136. doi: 10.1007/s10623-017-0330-z.
|
[12] |
GAO Jian, ZHANG Yaozong, LIU Ying, et al. New MDS EAQECCs derived from constacyclic codes over $ {\mathbb{F}}_{{q}^{2}}+v{\mathbb{F}}_{{q}^{2}} $[J]. Discrete Mathematics, 2023, 346(9): 113513. doi: 10.1016/j.disc.2023.113513.
|
[13] |
FANG Weijun, FU Fangwei, LI Lanqiang, et al. Euclidean and Hermitian hulls of MDS codes and their applications to EAQECCs[J]. IEEE Transactions on Information Theory, 2020, 66(6): 3527–3537. doi: 10.1109/TIT.2019.2950245.
|
[14] |
CAO Meng. Several new families of MDS EAQECCs with much larger dimensions and related application to EACQCs[J]. Quantum Information Processing, 2023, 22(12): 447. doi: 10.1007/s11128-023-04197-6.
|
[15] |
LUO Gaojun, CAO Xiwang, and CHEN Xiaojing. MDS codes with hulls of arbitrary dimensions and their quantum error correction[J]. IEEE Transactions on Information Theory, 2019, 65(5): 2944–2952. doi: 10.1109/TIT.2018.2874953.(查阅网上资料,本条文献与第7条文献重复,请确认).
|
[16] |
LU Liangdong, MA Wenping, and GUO Luobin. Two families of entanglement-assisted quantum MDS codes from constacyclic codes[J]. International Journal of Theoretical Physics, 2020, 59(6): 1657–1667. doi: 10.1007/s10773-020-04433-0.
|
[17] |
PEREIRA F R F and MANCINI S. Entanglement-assisted quantum codes from cyclic codes[J]. Entropy, 2023, 25(1): 37. doi: 10.3390/e25010037.
|
[18] |
GALINDO C, HERNANDO F, and RUANO D. Entanglement-assisted quantum error-correcting codes from RS codes and BCH codes with extension degree 2[J]. Quantum Information Processing, 2021, 20(5): 158. doi: 10.1007/s11128-021-03101-4.
|
[19] |
ZHU Shixin and WAN Ruhao. On the existence of Galois self-dual GRS and TGRS codes[J]. Finite Fields and Their Applications, 2025, 105: 102608. doi: 10.1016/j.ffa.2025.102608.
|
[20] |
HUANG Daitao, YUE Qin, NIU Yongfeng, et al. MDS or NMDS self-dual codes from Twisted generalized Reed–Solomon codes[J]. Designs, Codes and Cryptography, 2021, 89(9): 2195–2209. doi: 10.1007/s10623-021-00910-7.
|
[21] |
BEELEN P, BOSSERT M, PUCHINGER S, et al. Structural properties of twisted Reed-Solomon codes with applications to cryptography[C]. IEEE International Symposium on Information Theory, Vail, USA, 2018: 946–950. doi: 10.1109/ISIT.2018.8437923.
|
[22] |
LIU Hongwei and LIU Shengwei. Construction of MDS twisted Reed-Solomon codes and LCD MDS codes[J]. Designs, Codes and Cryptography, 2021, 89(9): 2051–2065. doi: 10.1007/s10623-021-00899-z.
|
[23] |
LAVAUZELLE J and RENNER J. Cryptanalysis of a system based on twisted Reed-Solomon codes[J]. Designs, Codes and Cryptography, 2020, 88(7): 1285–1300. doi: 10.1007/s10623-020-00747-6.
|
[24] |
ZHU Canze and LIAO Qunying. The non-GRS properties for the twisted generalized Reed-Solomon code and its extended code[Z]. arXiv: 2204.11955, 2022. doi: 10.48550/arXiv.2204.11955. (查阅网上资料,请作者核对文献类型及格式是否正确).
|
[25] |
ZHU Canze and LIAO Qunying. The ( $ + $)-extended twisted generalized Reed-Solomon code[J]. Discrete Mathematics, 2024, 347(2): 113749. doi: 10.1016/j.disc.2023.113749.
|
[26] |
LIU Hualu and LIU Xiusheng. New EAQEC codes from cyclic codes over $ {\mathbb{F}}_{q}+u{\mathbb{F}}_{q} $[J]. Quantum Information Processing, 2020, 19(3): 85. doi: 10.1007/s11128-020-2580-3.
|
[27] |
GRASSL M, HUBER F, and WINTER A. Entropic proofs of singleton bounds for quantum error-correcting codes[J]. IEEE Transactions on Information Theory, 2022, 68(6): 3942–3950. doi: 10.1109/TIT.2022.3149291.
|
[28] |
GALINDO C, HERNANDO F, MATSUMOTO R, et al. Entanglement-assisted quantum error-correcting codes over arbitrary finite fields[J]. Quantum Information Processing, 2019, 18(4): 116. doi: 10.1007/s11128-019-2234-5.
|
[29] |
BEELEN P, PUCHINGER S, and ROSENKILDE J. Twisted reed-Solomon codes[C]. IEEE International Symposium on Information Theory, Aachen, Germany, 2017: 336–340. doi: 10.1109/ISIT.2017.8006545.
|
[30] |
LU Liangdong, MA Wenping, and GUO Luobin. Two families of entanglement-assisted quantum MDS codes from constacyclic codes[J]. International Journal of Theoretical Physics, 2020, 59(6): 1657–1667. doi: 10.1007/s10773-020-04433-0.(查阅网上资料,本条文献与第16条文献重复,请确认).
|
[31] |
SARI M and KÖROĞLU M E. New entanglement-assisted quantum MDS codes with maximal entanglement[J]. International Journal of Theoretical Physics, 2021, 60(1): 243–253. doi: 10.1007/s10773-020-04682-z.
|
[32] |
FAN Jihao, CHEN Hanwu, and XU Juan. Constructions of $ \mathrm{q} $-ary entanglement-assisted quantum MDS codes with minimum distance greater than $ q+1 $[J]. Quantum Information & Computation, 2016, 16(5/6): 423–434.
|
[33] |
SARI M and KOLOTOĞLU E. An application of constacyclic codes to entanglement-assisted quantum MDS codes[J]. Computational and Applied Mathematics, 2019, 38(2): 75. doi: 10.1007/s40314-019-0837-1.
|
[34] |
LI Ruihu, GUO Guanmin, SONG Hao, et al. New constructions of entanglement-assisted quantum MDS codes from negacyclic codes[J]. International Journal of Quantum Information, 2019, 17(3): 1950022. doi: 10.1142/S0219749919500229.
|
[35] |
LIU Yang, LI Ruihu, LV Liangdong, et al. Application of constacyclic codes to entanglement-assisted quantum maximum distance separable codes[J]. Quantum Information Processing, 2018, 17(8): 210. doi: 10.1007/s11128-018-1978-7.
|
[36] |
PANG Binbin, ZHU Shixin, LI Fulin, et al. New entanglement-assisted quantum MDS codes with larger minimum distance[J]. Quantum Information Processing, 2020, 19(7): 207. doi: 10.1007/s11128-020-02698-2.
|