Citation: | ZHOU Kang, HOU Bo, WANG Liwei, LEI Dengyun, LUO Yongzhen, HUANG Zhongkai. A CNN-LSTM Fusion-Based Method for Detecting Hardware Trojan Bypasses[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250241 |
[1] |
JACOB N, MERLI D, HEYSZL J, et al. Hardware trojans: Current challenges and approaches[J]. IET Computers & Digital Techniques, 2014, 8(6): 264–273. doi: 10.1049/iet-cdt.2014.0039.
|
[2] |
黄钊, 王泉, 杨鹏飞. 硬件木马: 关键问题研究进展及新动向[J]. 计算机学报, 2019, 42(5): 993–1017. doi: 10.11897/SP.J.1016.2019.00993.
HUANG Zhao, WANG Quan, and YANG Pengfei. Hardware trojan: Research progress and new trends on key problems[J]. Chinese Journal of Computers, 2019, 42(5): 993–1017. doi: 10.11897/SP.J.1016.2019.00993.
|
[3] |
许强, 蒋兴浩, 姚立红, 等. 硬件木马检测与防范研究综述[J]. 网络与信息安全学报, 2017, 3(4): 1–13. doi: 10.11959/j.issn.2096-109x.2017.00160.
XU Qiang, JIANG Xinghao, YAO Lihong, et al. Overview of the detection and prevention study of hardware trojans[J]. Chinese Journal of Network and Information Security, 2017, 3(4): 1–13. doi: 10.11959/j.issn.2096-109x.2017.00160.
|
[4] |
倪林, 李少青, 马瑞聪, 等. 硬件木马检测与防护[J]. 数字通信, 2014, 41(1): 59–63,68. doi: 10.3969/j.issn.1005-3824.2014.01.016.
NI Lin, LI Shaoqing, MA Ruicong, et al. Hardware Trojans detection and protection[J]. Digital Communication, 2014, 41(1): 59–63,68. doi: 10.3969/j.issn.1005-3824.2014.01.016.
|
[5] |
INOUE T, HASEGAWA K, YANAGISAWA M, et al. Designing hardware trojans and their detection based on a SVM-based approach[C]. 2017 IEEE 12th International Conference on ASIC (ASICON), Guiyang, China, 2017: 811–814. doi: 10.1109/ASICON.2017.8252600.
|
[6] |
冯燕, 陈岚. 基于路径特征和支持向量机算法的硬件木马检测技术[J]. 电子与信息学报, 2023, 45(6): 1921–1932. doi: 10.11999/JEIT220500.
FENG Yan and CHEN Lan. Hardware trojan detection based on path feature and support vector machine[J]. Journal of Electronics & Information Technology, 2023, 45(6): 1921–1932. doi: 10.11999/JEIT220500.
|
[7] |
PAN Zhixin and MISHRA P. Hardware trojan detection using shapley ensemble boosting[M]. PAN Zhixin and MISHRA P. Explainable AI for Cybersecurity. Cham: Springer, 2023: 141–159. doi: 10.1007/978-3-031-46479-9_7.
|
[8] |
DTHAR T, DAS R, GIRI C, et al. Threshold analysis using probabilistic xgboost classifier for hardware trojan detection[J]. Journal of Electronic Testing, 2023, 39(4): 447–463. doi: 10.1007/s10836-023-06079-2.
|
[9] |
PUSPA S N, ENAN A, MAJUMDAR R, et al. An AI-enabled side channel power analysis based hardware trojan detection method for securing the integrated circuits in cyber-physical systems[EB/OL]. https://arxiv.org/abs/2411.12721, 2024.
|
[10] |
CYHEN Yushi, JIANG Hanlu, LI Chunyang, et al. Deep feature extraction and classification of hyperspectral images based on convolutional neural networks[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(10): 6232–6251. doi: 10.1109/TGRS.2016.2584107.
|
[11] |
REN Shaoqing, HE Kaiming, GIRSHICK R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137–1149. doi: 10.1109/TPAMI.2016.2577031.
|
[12] |
SHELHAMER E, LONG J, and DARRELL T. Fully convolutional networks for semantic segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(4): 640–651. doi: 10.1109/TPAMI.2016.2572683.
|
[13] |
KALASH M, ROCHAN M, MOHAMMED N, et al. Malware classification with deep convolutional neural networks[C]. Proceedings of 2018 9th IFIP International Conference on New Technologies, Mobility and Security (NTMS), Paris, France, 2018: 1–5. doi: 10.1109/NTMS.2018.8328749.
|
[14] |
LI Qing, CAI Weidong, WANG Xiaogang, et al. Medical image classification with convolutional neural network[C]. 2014 13th International Conference on Control Automation Robotics & Vision (ICARCV), Singapore, Singapore, 2014: 844–848. doi: 10.1109/ICARCV.2014.7064414.
|
[15] |
SONG Tengfei, ZHENG Wenming, SONG Peng, et al. EEG emotion recognition using dynamical graph convolutional neural networks[J]. IEEE Transactions on Affective Computing, 2020, 11(3): 532–541. doi: 10.1109/TAFFC.2018.2817622.
|
[16] |
MOHANRAJ P, PARAMASIVAM S, and SATHYAMOORTHY P. A power traces based hardware trojan detection using deep artificial neural network[J]. Analog Integrated Circuits and Signal Processing, 2025, 123(1): 3. doi: 10.1007/s10470-025-02351-x.
|
[17] |
胡涛, 佃松宜, 蒋荣华. 基于长短时记忆神经网络的硬件木马检测[J]. 计算机工程, 2020, 46(7): 110–115. doi: 10.19678/j.issn.1000-3428.0055589.
HU Tao, DIAN Songyi, and JIANG Ronghua. Hardware trojan detection based on long short-term memory neural network[J]. Computer Engineering, 2020, 46(7): 110–115. doi: 10.19678/j.issn.1000-3428.0055589.
|
[18] |
NASR A, MOHAMED K, ELSHENAWY A, et al. A Siamese deep learning framework for efficient hardware Trojan detection using power side-channel data[J]. Scientific Reports, 2024, 14(1): 13013. doi: 10.1038/s41598-024-62744-2.
|
[19] |
GAO Yuchan, SU Jing, LI Jia, et al. A neural network framework based on ConvNeXt for side‐channel hardware Trojan detection[J]. ETRI Journal, 2025, 47(2): 338–349. doi: 10.4218/etrij.2023-0448.
|
[20] |
BELHUMEUR P N, HESPANHA J P, and KRIEGMAN D J. Eigenfaces vs. Fisherfaces: Recognition using class specific linear projection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, 19(7): 711–720. doi: 10.1109/34.598228.
|
[21] |
XU Bing, WANG Naiyan, CHEN Tianqi, et al. Empirical evaluation of rectified activations in convolutional network[EB/OL]. https://arxiv.org/abs/1505.00853, 2015.
|