Citation: | ZHAO Yiqiang, LI Zhengyang, ZHANG Qizhi, YE Mao, XIA Xianzhao, LI Yao, HE Jiaji. Gate-level Side-Channel Protection Method Based on Hybrid-order Masking[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250198 |
[1] |
张厚来, 齐骥, 刘宇博, 等. 密码侧信道分析前沿案例综述[J]. 信息安全与通信保密, 2024(11): 32–48. doi: 10.3969/j.issn.1009-8054.2024.11.006.
ZHANG Houlai, QI Ji, LIU Yubo, et al. A review of advanced cases of cryptographic side-channel analysis[J]. Information Security and Communications Privacy, 2024(11): 32–48. doi: 10.3969/j.issn.1009-8054.2024.11.006.
|
[2] |
KOCHER P C. Timing attacks on implementations of Diffie-Hellman, RSA, DSS, and other systems[C]. 16th Annual International Cryptology Conference on Advances in Cryptology, Santa Barbara, USA, 1996: 104–113. doi: 10.1007/3-540-68697-5_9.
|
[3] |
BONEH D, DEMILLO R A, and LIPTON R J. On the importance of checking cryptographic protocols for faults[C]. International Conference on the Theory and Application of Cryptographic Techniques, Konstanz, Germany, 1997: 37–51. doi: 10.1007/3-540-69053-0_4.
|
[4] |
KOCHER P, JAFFE J, and JUN B. Differential power analysis[C]. 19th Annual International Cryptology Conference on Advances in Cryptology, Santa Barbara, USA, 1999: 388–397. doi: 10.1007/3-540-48405-1_25.
|
[5] |
BRIER E, CLAVIER C, and OLIVIER F. Correlation power analysis with a leakage model[C]. 6th International Workshop on Cryptographic Hardware and Embedded Systems, Cambridge, USA, 2004: 16–29. doi: 10.1007/978-3-540-28632-5_2.
|
[6] |
BATINA L, GIERLICHS B, PROUFF E, et al. Mutual information analysis: A comprehensive study[J]. Journal of Cryptology, 2011, 24(2): 269–291. doi: 10.1007/s00145-010-9084-8.
|
[7] |
CHOUDARY O and KUHN M G. Efficient template attacks[C]. 12th International Conference on Smart Card Research and Advanced Applications, Berlin, Germany, 2013: 253–270. doi: 10.1007/978-3-319-08302-5_17.
|
[8] |
OSWALD E, MANGARD S, HERBST C, et al. Practical second-order DPA attacks for masked smart card implementations of block ciphers[C]. The Cryptographers’ Track at the RSA Conference, San Jose, USA, 2006: 192–207. doi: 10.1007/11605805_13.
|
[9] |
王亚琦, 黄帆, 段晓林, 等. 对Kyber算法的二阶侧信道攻击: 针对掩码哈希函数(英文)[J]. 密码学报(中英文), 2024, 11(6): 1415–1436. doi: 10.13868/j.cnki.jcr.000745.
WANG Yaqi, HUANG Fan, DUAN Xiaolin, et al. Second-order side-channel attacks on Kyber: Targeting the masked hash function[J]. Journal of Cryptologic Research, 2024, 11(6): 1415–1436. doi: 10.13868/j.cnki.jcr.000745.
|
[10] |
CASSIERS G and STANDAERT F X. Trivially and efficiently composing masked gadgets with probe isolating non-interference[J]. IEEE Transactions on Information Forensics and Security, 2020, 15: 2542–2555. doi: 10.1109/TIFS.2020.2971153.
|
[11] |
MÜLLER N and MORADI A. Robust but relaxed probing model[J]. IACR Transactions on Cryptographic Hardware and Embedded Systems, 2024, 2024(4): 451–482. doi: 10.46586/tches.v2024.i4.451-482.
|
[12] |
YAO Yuan, KATHURIA T, EGE B, et al. Architecture correlation analysis (ACA): Identifying the source of side-channel leakage at gate-level[C]. 2020 IEEE International Symposium on Hardware Oriented Security and Trust (HOST), San Jose, USA, 2020: 188–196. doi: 10.1109/HOST45689.2020.9300271.
|
[13] |
MA Haocheng, ZHANG Qizhi, GAO Ya, et al. PathFinder: Side channel protection through automatic leaky paths identification and obfuscation[C]. The 59th ACM/IEEE Design Automation Conference, San Francisco, USA, 2022: 79–84. doi: 10.1145/3489517.3530413.
|
[14] |
DAS D, MAITY S, NASIR S B, et al. ASNI: Attenuated signature noise injection for low-overhead power side-channel attack immunity[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2018, 65(10): 3300–3311. doi: 10.1109/TCSI.2018.2819499.
|
[15] |
NASSAR M, SOUISSI Y, GUILLEY S, et al. RSM: A small and fast countermeasure for AES, secure against 1st and 2nd-order zero-offset SCAs[C]. 2012 Design, Automation & Test in Europe Conference & Exhibition (DATE), Dresden, Germany, 2012: 1173–1178. doi: 10.1109/DATE.2012.6176671.
|
[16] |
GROSS H, MANGARD S, and KORAK T. Domain-oriented masking: Compact masked hardware implementations with arbitrary protection order[C]. The 2016 ACM Workshop on Theory of Implementation Security, Vienna, Austria, 2016: 3. doi: 10.1145/2996366.2996426.
|
[17] |
ITOH K, TAKENAKA M, and TORII N. DPA countermeasure based on the “masking method”[C]. 4th International Conference on Information Security and Cryptology, Seoul, Korea, 2001: 440–456. doi: 10.1007/3-540-45861-1_33.
|
[18] |
WU Lixuan, FAN Yanhong, PRENEEL B, et al. Automated generation of masked nonlinear components: From lookup tables to private circuits[C]. ACNS 2024 Satellite Workshops on Applied Cryptography and Network Security Workshops, Abu Dhabi, United Arab Emirates, 2024: 319–339. doi: 10.1007/978-3-031-61486-6_19.
|
[19] |
DILIP KUMAR S V, BALASCH J, GIERLICHS B, et al. Low-cost first-order secure Boolean masking in glitchy hardware[J]. IEEE Transactions on Information Forensics and Security, 2025, 20: 2437–2449. doi: 10.1109/TIFS.2025.3541442.
|
[20] |
TIRI K and VERBAUWHEDE I. A logic level design methodology for a secure DPA resistant ASIC or FPGA implementation[C]. Design, Automation and Test in Europe Conference and Exhibition, Paris, France, 2004: 246–251. doi: 10.1109/DATE.2004.1268856.
|
[21] |
KOYANAGI Y and UKEZONO T. A cost-sensitive and simple masking design for side-channels[C]. TENCON 2023–2023 IEEE Region 10 Conference (TENCON), Chiang Mai, Thailand, 2023: 732–737. doi: 10.1109/TENCON58879.2023.10322358.
|
[22] |
GROSS H, MANGARD S, and KORAK T. An efficient side-channel protected AES implementation with arbitrary protection order[C]. The Cryptographers’ Track at the RSA Conference on Topics in Cryptology, San Francisco, USA, 2017: 95–112. doi: 10.1007/978-3-319-52153-4_6.
|
[23] |
李聪辉, 姚茂群. 基于掩码技术的抗功耗攻击电路方案设计[J]. 太赫兹科学与电子信息学报, 2024, 22(12): 1421–1425. doi: 10.11805/TKYDA2023070.
LI Conghui and YAO Maoqun. Design of circuit against power analysis attacks based on masking technology[J]. Journal of Terahertz Science and Electronic Information Technology, 2024, 22(12): 1421–1425. doi: 10.11805/TKYDA2023070.
|
[24] |
BEPARY M K, ZHANG Tao, ZHOU Jingbo, et al. Towards efficient gate-level electromagnetic side-channel leakage modeling and vulnerability assessment[J]. Journal of Hardware and Systems Security, 2025: 1–14. doi: 10.1007/s41635-025-00161-1.
|
[25] |
MORADI A, POSCHMANN A, LING San, et al. Pushing the limits: A very compact and a threshold implementation of AES[C]. 30th Annual International Conference on the Theory and Applications of Cryptographic Techniques, Tallinn, Estonia, 2011: 69–88. doi: 10.1007/978-3-642-20465-4_6.
|
[26] |
RAMEZANPOUR K, AMPADU P, and DIEHL W. RS-Mask: Random space masking as an integrated countermeasure against power and fault analysis[C]. 2020 IEEE International Symposium on Hardware Oriented Security and Trust (HOST), San Jose, USA, 2020: 176–187. doi: 10.1109/HOST45689.2020.9300266.
|