| Citation: | HU Di, YUAN Xia, XU Xiaoqiang, ZHAO Chunxia. A Review of Ground-to-Aerial Cross-View Localization Research[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250167 |
| [1] |
SHI Yujiao, YU Xin, LIU Liu, et al. Optimal feature transport for cross-view image geo-localization[C]. Proceedings of the 34th AAAI Conference on Artificial Intelligence, New York, USA, 2020: 11990–11997. doi: 10.1609/aaai.v34i07.6875.
|
| [2] |
WANG Tingyu, ZHENG Zhedong, YAN Chenggang, et al. Each part matters: Local patterns facilitate cross-view geo-localization[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2022, 32(2): 867–879. doi: 10.1109/TCSVT.2021.3061265.
|
| [3] |
WANG Shan, ZHANG Yanhao, PERINCHERRY A, et al. View consistent purification for accurate cross-view localization[C]. Proceedings of 2023 IEEE/CVF International Conference on Computer Vision, Paris, France, 2023: 8163–8172. doi: 10.1109/ICCV51070.2023.00753.
|
| [4] |
RODRIGUES R and TANI M. Are these from the same place? Seeing the unseen in cross-view image geo-localization[C]. Proceedings of 2021 IEEE Winter Conference on Applications of Computer Vision, Waikoloa, USA, 2021: 3752–3760. doi: 10.1109/WACV48630.2021.00380.
|
| [5] |
HU Di, YUAN Xia, and ZHAO Chunxia. Active layered topology mapping driven by road intersection[J]. Knowledge-Based Systems, 2025, 315: 113305. doi: 10.1016/j.knosys.2025.113305.
|
| [6] |
DURGAM A, PAHEDING S, DHIMAN V, et al. Cross-view geo-localization: A survey[J]. IEEE Access, 2024, 12: 192028–192050. doi: 10.1109/ACCESS.2024.3507280.
|
| [7] |
ZHANG Kai, YUAN Xia, CHEN Shuntong, et al. Multi-modality semantic-shared cross-view ground-to-aerial localization[C]. Proceedings of the 6th ACM International Conference on Multimedia in Asia, Auckland, New Zealand, 2024: 72. doi: 10.1145/3696409.3700233.
|
| [8] |
WILSON D, ZHANG Xiaohan, SULTANI W, et al. Image and object geo-localization[J]. International Journal of Computer Vision, 2024, 132(4): 1350–1392. doi: 10.1007/s11263-023-01942-3.
|
| [9] |
张硝, 高艺, 夏宇翔, 等. 跨视角图像地理定位数据集综述[J]. 遥感学报, 2025, 29(8): 2511–2530. doi: 10.11834/jrs.20254348.
ZHANG Xiao, GAO Yi, XIA Yuxiang, et al. Review of cross-view image geo-localization datasets[J]. National Remote Sensing Bulletin, 2025, 29(8): 2511–2530. doi: 10.11834/jrs.20254348.
|
| [10] |
ASPERTI A, FIORILLA S, NARDI S, et al. A review of recent techniques for person re-identification[J]. Machine Vision and Applications, 2025, 36(1): 25. doi: 10.1007/s00138-024-01622-3.
|
| [11] |
ZHANG Yuxin, GUI Jie, CONG Xiaofeng, et al. A comprehensive survey and taxonomy on point cloud registration based on deep learning[C]. Proceedings of the 33rd International Joint Conference on Artificial Intelligence, Jeju, South Korea, 2024: 8344–8353. doi: 10.24963/ijcai.2024/922.
|
| [12] |
BANSAL M, SAWHNEY H S, CHENG Hui, et al. Geo-localization of street views with aerial image databases[C]. Proceedings of the 19th ACM International Conference on Multimedia, Scottsdale, USA, 2011: 1125–1128. doi: 10.1145/2072298.2071954.
|
| [13] |
BANSAL M, DANIILIDIS K, and SAWHNEY H. Ultrawide baseline facade matching for geo-localization[M]. ZAMIR A R, HAKEEM, A VAN GOOL L, et al. Large-Scale Visual Geo-Localization. Cham: Springer, 2016: 77–98. doi: 10.1007/978-3-319-25781-5_5.
|
| [14] |
VO N N and HAYS J. Localizing and orienting street views using overhead imagery[C]. Proceedings of the 14th European Conference on Computer Vision, Amsterdam, The Netherlands, 2016: 494–509. doi: 10.1007/978-3-319-46448-0_30.
|
| [15] |
ZHAI Menghua, BESSINGER Z, WORKMAN S, et al. Predicting ground-level scene layout from aerial imagery[C]. Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2017: 4132–4140. doi: 10.1109/CVPR.2017.440.
|
| [16] |
MILLER I D, COWLEY A, KONKIMALLA R, et al. Any way you look at it: Semantic crossview localization and mapping with LiDAR[J]. IEEE Robotics and Automation Letters, 2021, 6(2): 2397–2404. doi: 10.1109/LRA.2021.3061332.
|
| [17] |
KIM J and KIM J. Fusing lidar data and aerial imagery with perspective correction for precise localization in urban canyons[C]. Proceedings of 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems, Macau, China, 2019: 5298–5303. doi: 10.1109/IROS40897.2019.8967711.
|
| [18] |
HU Di, YUAN Xia, XI Huiying, et al. Road structure inspired UGV-satellite cross-view geo-localization[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2024, 17: 16767–16786. doi: 10.1109/JSTARS.2024.3457756.
|
| [19] |
SHI Qian, HE Da, LIU Zhengyu, et al. Globe230k: A benchmark dense-pixel annotation dataset for global land cover mapping[J]. Journal of Remote Sensing, 2023, 3: 0078. doi: 10.34133/remotesensing.0078.
|
| [20] |
GEIGER A, LENZ P, STILLER C, et al. Vision meets robotics: The kitti dataset[J]. The International Journal of Robotics Research, 2013, 32(11): 1231–1237. doi: 10.1177/0278364913491297.
|
| [21] |
ZHU Sijie, YANG Taojiannan, and CHEN Chen. VIGOR: Cross-view image geo-localization beyond one-to-one retrieval[C]. Proceedings of 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, USA, 2021: 5316–5325. doi: 10.1109/CVPR46437.2021.00364.
|
| [22] |
WORKMAN S, SOUVENIR R, and JACOBS N. Wide-area image geolocalization with aerial reference imagery[C]. Proceedings of 2015 IEEE International Conference on Computer Vision, Santiago, Chile, 2015: 3961–3969. doi: 10.1109/ICCV.2015.451.
|
| [23] |
黄高爽, 周杨, 胡校飞, 等. 图像地理定位研究进展[J]. 地球信息科学学报, 2023, 25(7): 1336–1362. doi: 10.12082/dqxxkx.2023.230073.
HUANG Gaoshuang, ZHOU Yang, HU Xiaofei, et al. A survey of the research progress in image geo-localization[J]. Journal of Geo-information Science, 2023, 25(7): 1336–1362. doi: 10.12082/dqxxkx.2023.230073.
|
| [24] |
MA Yuexin, WANG Tai, BAI Xuyang, et al. Vision-centric BEV perception: A survey[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2024, 46(12): 10978–10997. doi: 10.1109/TPAMI.2024.3449912.
|
| [25] |
周博文, 李阳, 马鑫骥, 等. 深度学习的跨视角地理定位方法综述[J]. 中国图象图形学报, 2024, 29(12): 3543–3563. doi: 10.11834/jig.230858.
ZHOU Bowen, LI Yang, MA Xinji, et al. A survey of cross-view geo-localization methods based on deep learning[J]. Journal of Image and Graphics, 2024, 29(12): 3543–3563. doi: 10.11834/jig.230858.
|
| [26] |
TOKER A, ZHOU Qunjie, MAXIMOV M, et al. Coming down to earth: Satellite-to-street view synthesis for geo-localization[C]. Proceedings of 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, USA, 2021: 6484–6493. doi: 10.1109/CVPR46437.2021.00642.
|
| [27] |
TANG Hao, LIU Hong, and SEBE N. Unified generative adversarial networks for controllable image-to-image translation[J]. IEEE Transactions on Image Processing, 2020, 29: 8916–8929. doi: 10.1109/TIP.2020.3021789.
|
| [28] |
LI Ang, MORARIU V I, and DAVIS L S. Planar structure matching under projective uncertainty for geolocation[C]. Proceedings of the 13th European Conference on Computer Vision, Zurich, Switzerland, 2014: 265–280. doi: 10.1007/978-3-319-10584-0_18.
|
| [29] |
LIN T Y, BELONGIE S, and HAYS J. Cross-view image geolocalization[C]. Proceedings of 2013 IEEE Conference on Computer Vision and Pattern Recognition, Portland, USA, 2013: 891–898. doi: 10.1109/CVPR.2013.120.
|
| [30] |
CAO Song and SNAVELY N. Graph-based discriminative learning for location recognition[C]. Proceedings of 2013 IEEE Conference on Computer Vision and Pattern Recognition, Portland, USA, 2013: 700–707. doi: 10.1109/CVPR.2013.96.
|
| [31] |
WORKMAN S and JACOBS N. On the location dependence of convolutional neural network features[C]. Proceedings of 2015 IEEE Conference on Computer Vision and Pattern Recognition Workshops, Boston, USA, 2015: 70–78. doi: 10.1109/CVPRW.2015.7301385.
|
| [32] |
HU Sixing, FENG Mengdan, NGUYEN R M H, et al. CVM-Net: Cross-view matching network for image-based ground-to-aerial geo-localization[C]. Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 7258–7267. doi: 10.1109/CVPR.2018.00758.
|
| [33] |
ZHU Sijie, SHAH M, and CHEN Chen. TransGeo: Transformer is all you need for cross-view image geo-localization[C]. Proceedings of 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, USA, 2022: 1152–1161. doi: 10.1109/CVPR52688.2022.00123.
|
| [34] |
MEI Shaohui, LIAN Jiawei, WANG Xiaofei, et al. A comprehensive study on the robustness of deep learning-based image classification and object detection in remote sensing: Surveying and benchmarking[J]. Journal of Remote Sensing, 2024, 4: 0219. doi: 10.34133/remotesensing.0219.
|
| [35] |
SHI Yujiao, LIU Liu, YU Xin, et al. Spatial-aware feature aggregation for cross-view image based geo-localization[C]. Proceedings of the 33rd International Conference on Neural Information Processing Systems, Vancouver, Canada, 2019: 905. doi: 10.5555/3454287.3455192.
|
| [36] |
MI Li, XU Chang, CASTILLO-NAVARRO J, et al. ConGeo: Robust cross-view geo-localization across ground view variations[C]. Proceedings of the 18th European Conference on Computer Vision, Milan, Italy, 2024: 214–230. doi: 10.1007/978-3-031-72630-9_13.
|
| [37] |
ZHANG Xiaohan, LI Xingyu, SULTANI W, et al. Cross-view geo-localization via learning disentangled geometric layout correspondence[C]. Proceedings of the 37th AAAI Conference on Artificial Intelligence, Washington, USA, 2023: 3480–3488. doi: 10.1609/aaai.v37i3.25457.
|
| [38] |
REGMI K and BORJI A. Cross-view image synthesis using geometry-guided conditional GANs[J]. Computer Vision and Image Understanding, 2019, 187: 102788. doi: 10.1016/j.cviu.2019.07.008.
|
| [39] |
ZHAO Luying, ZHOU Yang, HU Xiaofei, et al. Street-to-satellite view synthesis for cross-view geo-localization[C]. Proceedings of SPIE 13166, International Conference on Remote Sensing Technology and Survey Mapping, Changchun, China, 2024: 1316608. doi: 10.1117/12.3029089.
|
| [40] |
SHI Yujiao, CAMPBELL D, YU Xin, et al. Geometry-guided street-view panorama synthesis from satellite imagery[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(12): 10009–10022. doi: 10.1109/TPAMI.2022.3140750.
|
| [41] |
XIA Zimin, BOOIJ O, MANFREDI M, et al. Visual cross-view metric localization with dense uncertainty estimates[C]. Proceedings of the 17th European Conference on Computer Vision, Tel Aviv, Israel, 2022: 90–106. doi: 10.1007/978-3-031-19842-7_6.
|
| [42] |
SONG Zhenbo, ZE Xianghui, LU Jianfeng, et al. Learning dense flow field for highly-accurate cross-view camera localization[C]. Proceedings of the 37th International Conference on Neural Information Processing Systems, New Orleans, USA, 2023: 3094. doi: 10.5555/3666122.3669216.
|
| [43] |
FERVERS F, BULLINGER S, BODENSTEINER C, et al. Uncertainty-aware vision-based metric cross-view geolocalization[C]. Proceedings of 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, Canada, 2023: 21621–21631. doi: 10.1109/CVPR52729.2023.02071.
|
| [44] |
TANG T Y, DE MARTINI D, BARNES D, et al. RSL-Net: Localising in satellite images from a radar on the ground[J]. IEEE Robotics and Automation Letters, 2020, 5(2): 1087–1094. doi: 10.1109/LRA.2020.2965907.
|
| [45] |
FU Mengyin, ZHU Minzhao, YANG Yi, et al. LiDAR-based vehicle localization on the satellite image via a neural network[J]. Robotics and Autonomous Systems, 2020, 129: 103519. doi: 10.1016/j.robot.2020.103519.
|
| [46] |
CHEN Lei, FENG Changzhou, MA Yunpeng, et al. A review of rigid point cloud registration based on deep learning[J]. Frontiers in Neurorobotics, 2024, 17: 1281332. doi: 10.3389/fnbot.2023.1281332.
|
| [47] |
TANG T Y, DE MARTINI D, and NEWMAN P. Get to the point: Learning lidar place recognition and metric localisation using overhead imagery[C]. Proceedings of Robotics: Science and Systems 2021, 2021. doi: 10.15607/RSS.2021.XVII.003.(查阅网上资料,未找到出版地信息,请补充).
|
| [48] |
TANG T Y, DE MARTINI D, and NEWMAN P. Point-based metric and topological localisation between lidar and overhead imagery[J]. Autonomous Robots, 2023, 47(5): 595–615. doi: 10.1007/s10514-023-10085-w.
|
| [49] |
GE Chongjian, CHEN Junsong, XIE Enze, et al. MetaBEV: Solving sensor failures for 3D detection and map segmentation[C]. Proceedings of 2023 IEEE/CVF International Conference on Computer Vision, Paris, France, 2023: 8687–8697. doi: 10.1109/ICCV51070.2023.00801.
|
| [50] |
LIU Liu and LI Hongdong. Lending orientation to neural networks for cross-view geo-localization[C]. Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, USA, 2019: 5617–5626. doi: 10.1109/CVPR.2019.00577.
|
| [51] |
MADDERN W, PASCOE G, LINEGAR C, et al. 1 year, 1000 km: The oxford robotcar dataset[J]. The International Journal of Robotics Research, 2017, 36(1): 3–15. doi: 10.1177/0278364916679498.
|
| [52] |
MADDERN W, PASCOE G, GADD M, et al. Real-time kinematic ground truth for the oxford robotcar dataset[J]. arXiv: 2002.10152, 2020. doi: 10.48550/arXiv.2002.10152.(查阅网上资料,未能确认文献类型,请确认).
|
| [53] |
BARNES D, GADD M, MURCUTT P, et al. The oxford radar robotcar dataset: A radar extension to the oxford RobotCar dataset[C]. Proceedings of 2020 IEEE International Conference on Robotics and Automation, Paris, France, 2020: 6433–6438. doi: 10.1109/ICRA40945.2020.9196884.
|
| [54] |
AGARWAL S, VORA A, PANDEY G, et al. Ford multi-AV seasonal dataset[J]. The International Journal of Robotics Research, 2020, 39(12): 1367–1376. doi: 10.1177/0278364920961451.
|
| [55] |
YANG Hongji, LU Xiufan, and ZHU Yingying. Cross-view geo-localization with layer-to-layer transformer[C]. Proceedings of the 35th International Conference on Neural Information Processing Systems, 2021: 2222. doi: 10.5555/3540261.3542483. (查阅网上资料,未找到出版地信息,请补充).
|
| [56] |
SHI Yujiao, YU Xin, CAMPBELL D, et al. Where am I looking at? Joint location and orientation estimation by cross-view matching[C]. Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, USA, 2020: 4063–4071. doi: 10.1109/CVPR42600.2020.00412.
|
| [57] |
REGMI K and SHAH M. Bridging the domain gap for ground-to-aerial image matching[C]. Proceedings of 2019 IEEE/CVF International Conference on Computer Vision, Seoul, Korea (South), 2019: 470–479. doi: 10.1109/ICCV.2019.00056.
|
| [58] |
CHENG Lei, WANG Teng, LI Jiawen, et al. Offset regression enhanced cross-view feature interaction for ground-to-aerial geo-localization[J]. IEEE Transactions on Intelligent Vehicles, 2025, 10(1): 205–216. doi: 10.1109/TIV.2024.3411098.
|
| [59] |
ZHANG Xiaohan, LI Xingyu, SULTANI W, et al. GeoDTR+: Toward generic cross-view geolocalization via geometric disentanglement[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2024, 46(12): 10419–10433. doi: 10.1109/TPAMI.2024.3443652.
|
| [60] |
LI Chaoran, YAN Chao, XIANG Xiaojia, et al. AMPLE: Automatic progressive learning for orientation unknown ground-to-aerial geo-localization[J]. IEEE Transactions on Geoscience and Remote Sensing, 2025, 63: 5800115. doi: 10.1109/TGRS.2024.3517654.
|
| [61] |
SHUGAEV M, SEMENOV I, ASHLEY K, et al. ArcGeo: Localizing limited field-of-view images using cross-view matching[C]. Proceedings of 2024 IEEE/CVF Winter Conference on Applications of Computer Vision, Waikoloa, USA, 2024: 208–217. doi: 10.1109/WACV57701.2024.00028.
|
| [62] |
LI Chaoran, YAN Chao, XIANG Xiaojia, et al. HADGEO: Image based 3-DoF cross-view geo-localization with hard sample mining[C]. Proceedings of 2024 IEEE International Conference on Acoustics, Speech and Signal Processing, Seoul, Korea, Republic of, 2024: 3520–3524. doi: 10.1109/ICASSP48485.2024.10445839.
|
| [63] |
YE Junyan, LV Zhutao, LI Weijia, et al. Cross-view image geo-localization with panorama-BEV Co-retrieval network[C]. Proceedings of the 18th European Conference on Computer Vision, Milan, Italy, 2024: 74–90. doi: 10.1007/978-3-031-72913-3_5.
|
| [64] |
ZHU Yingying, YANG Hongji, LU Yuxin, et al. Simple, effective and general: A new backbone for cross-view image geo-localization[J]. arXiv: 2302.01572, 2023. doi: 10.48550/arXiv.2302.01572.(查阅网上资料,未能确认文献类型,请确认).
|
| [65] |
PARK J, SUNG C, LEE S, et al. Cross-view geo-localization via effective negative sampling[C]. Proceedings of the 2024 24th International Conference on Control, Automation and Systems, Jeju, Korea, Republic of, 2024: 1078–1083. doi: 10.23919/ICCAS63016.2024.10773330.
|
| [66] |
ZHANG Xiaohan, SULTANI W, and WSHAH S. Cross-view image sequence geo-localization[C]. Proceedings of 2023 IEEE/CVF Winter Conference on Applications of Computer Vision, Waikoloa, USA, 2023: 2913–2922. doi: 10.1109/WACV56688.2023.00293.
|
| [67] |
SHI Yujiao and LI Hongdong. Beyond cross-view image retrieval: Highly accurate vehicle localization using satellite image[C]. Proceedings of 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, USA, 2022: 16989–16999. doi: 10.1109/CVPR52688.2022.01650.
|
| [68] |
LENTSCH T, XIA Zimin, CAESAR H, et al. SliceMatch: Geometry-guided aggregation for cross-view pose estimation[C]. Proceedings of 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, Canada, 2023: 17225–17234. doi: 10.1109/CVPR52729.2023.01652.
|
| [69] |
XIA Zimin, BOOIJ O, and KOOIJ J F P. Convolutional cross-view pose estimation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2024, 46(5): 3813–3831. doi: 10.1109/TPAMI.2023.3346924.
|
| [70] |
WANG Xiaolong, XU Runsen, CUI Zuofan, et al. Fine-grained cross-view geo-localization using a correlation-aware homography estimator[C]. Proceedings of the 37th International Conference on Neural Information Processing Systems, New Orleans, USA, 2023: 234. doi: 10.5555/3666122.3666356.
|
| [71] |
WANG Qiwei, WU Shaoxun, and SHI Yujiao. BevSplat: Resolving height ambiguity via feature-based Gaussian primitives for weakly-supervised cross-view localization[J]. arXiv: 2502.09080, 2025. doi: 10.48550/arXiv.2502.09080.(查阅网上资料,未能确认文献类型,请确认).
|
| [72] |
HU Wenmiao, ZHANG Yichen, LIANG Yuxuan, et al. PetalView: Fine-grained location and orientation extraction of street-view images via cross-view local search[C]. Proceedings of the 31st ACM International Conference on Multimedia, Ottawa, Canada, 2023: 56–66. doi: 10.1145/3581783.3612007.
|
| [73] |
TANG T Y, DE MARTINI D, WU Shangzhe, et al. Self-supervised localisation between range sensors and overhead imagery[C]. Proceedings of Robotics: Science and Systems, Corvalis, USA, 2020. doi: 10.15607/RSS.2020.XVI.057.
|
| [74] |
HU Di, ZHANG Kai, YUAN Xia, et al. Real-time road intersection detection in sparse point cloud based on augmented viewpoints beam model[J]. Sensors, 2023, 23(21): 8854. doi: 10.3390/s23218854.
|