Advanced Search
Turn off MathJax
Article Contents
YUAN Yuyang, ZHANG Junhan, LI Dandan, SHA Jian jun. Application of WAM Data Set and Classification Method of Electromagnetic Wave Absorbing Materials[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250166
Citation: YUAN Yuyang, ZHANG Junhan, LI Dandan, SHA Jian jun. Application of WAM Data Set and Classification Method of Electromagnetic Wave Absorbing Materials[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250166

Application of WAM Data Set and Classification Method of Electromagnetic Wave Absorbing Materials

doi: 10.11999/JEIT250166 cstr: 32379.14.JEIT250166
  • Received Date: 2025-03-17
  • Accepted Date: 2025-11-03
  • Rev Recd Date: 2025-11-03
  • Available Online: 2025-11-13
  • The performance of electromagnetic radiation shielding and absorbing materials depends primarily on thickness, maximum reflection loss, and effective absorption bandwidth. Current research focuses on Metal–Organic Frameworks (MOFs), carbon-based, and ceramic absorbing materials, analyzed using weak artificial intelligence techniques applied to the Wave-Absorbing Materials (WAM) dataset. After dividing the dataset into training and testing subsets, data augmentation, correlation analysis, and principal component analysis are performed. A decision tree algorithm is then applied to establish classification indicators, revealing that the reflection loss of MOF materials exceeds that of carbon-based materials. MOFs are more likely to achieve a maximum reflection loss below –45 dB. The random forest algorithm demonstrates stronger generalization ability than the decision tree algorithm, with a higher ROC–AUC value. Neural network classification shows that the self-organizing map neural network yields superior classification performance, whereas the probabilistic neural network performs poorly. When the binary classification problem is extended to a three-class problem, nonlinear classification, clustering, and Boosting algorithms indicate that maximum reflection loss serves as a key discriminative feature. Further analysis confirms that the WAM dataset is nonlinearly separable and that fuzzy clustering achieves better results. Artificial intelligence facilitates the identification of relationships between material properties and absorption performance, accelerates the development of new Wave-Absorbing Materials (WAM), and supports the construction of a knowledge graph and database for absorbing materials.  Objective   Computational materials science, high-throughput experimentation, and the Materials Genome Initiative (MGI) have emerged as key frontiers in modern materials research. The MGI provides a strategic framework and developmental roadmap for advancing materials discovery through artificial intelligence. Analogous to gene sequencing in bioinformatics, its central objective is to accelerate the identification of novel material compositions and structures. Extracting valuable information from large-scale datasets substantially reduces costs, enhances efficiency, fosters interdisciplinary integration, and promotes transformative progress in materials development. Big data analytics, high-performance computing, and advanced algorithms form the core pillars of this initiative, supplying essential support for new materials research and development. Nevertheless, the discovery of new compositions and structures depends on the effective screening of candidate materials to identify those exhibiting superior properties suitable for engineering applications. Achieving this goal requires the establishment of comprehensive datasets, the development of reliable classification algorithms, the improvement of model generalization performance, and the advancement of application-oriented software tools.  Methods   Pattern recognition techniques are employed in this study. A self-developed WAM dataset is first constructed, comprising a test set and a validation set. Data preprocessing is performed initially, including data augmentation, data integration, and principal component analysis. Decision tree and random forest algorithms are applied to establish classification indicators and define classification criteria. Self-Organizing Map (SOM) and Probabilistic Neural Network (PNN) models are subsequently utilized for material classification. Finally, the accuracy of various clustering algorithms is evaluated, and the fuzzy clustering algorithm is found to achieve relatively superior performance and satisfactory classification results.  Results and Discussions   It is found that the reflection loss of MOF materials is superior to that of carbon-based materials. Semantic segmentation algorithms are identified as unsuitable for classifying the WAM dataset. Among the neural network approaches, the SOM achieves higher classification accuracy than the PNN. The WAM dataset is determined to be nonlinearly separable, indicating that classification performance depends strongly on the intrinsic data distribution characteristics. The maximum reflection loss is identified as the key indicator for effective classification.  Conclusions   A self-developed WAM dataset is constructed to address the lack of publicly available datasets for applying pattern recognition methods to electromagnetic WAM. The performance of multiple algorithms is evaluated, and the optimal algorithm is identified according to the dataset characteristics. The conventional binary classification problem is extended to a three-class framework, providing the foundation for further research on multi-class classification. The application of artificial intelligence algorithms is found to enhance the credibility and reliability of the research, reduce time and labor costs, and facilitate the exploration of relationships between material properties and absorption performance. This approach shortens the research and development cycle, supports the screening of new materials, and contributes to the establishment of a knowledge base for absorbing materials. However, the knowledge extracted from the WAM dataset remains limited by data sparsity, which constrains the effectiveness of artificial intelligence methods.
  • loading
  • [1]
    汪洪, 向勇, 项晓东, 等. 材料基因组——材料研发新模式[J]. 科技导报, 2015, 33(10): 13–19. doi: 10.3981/j.issn.1000-7857.2015.10.001.

    WANG Hong, XIANG Yong, XIANG Xiaodong, et al. Materials genome enables research and development revolution[J]. Science & Technology Review, 2015, 33(10): 13–19. doi: 10.3981/j.issn.1000-7857.2015.10.001.
    [2]
    施思齐, 徐积维, 崔艳华, 等. 多尺度材料计算方法[J]. 科技导报, 2015, 33(10): 20–30. doi: 10.3981/j.issn.1000-7857.2015.10.002.

    SHI Siqi, XU Jiwei, CUI Yanhua, et al. Multiscale materials computational methods[J]. Science & Technology Review, 2015, 33(10): 20–30. doi: 10.3981/j.issn.1000-7857.2015.10.002.
    [3]
    王海舟, 汪洪, 丁洪, 等. 材料的高通量制备与表征技术[J]. 科技导报, 2015, 33(10): 31–49. doi: 10.3981/j.issn.1000-7857.2015.10.003.

    WANG Haizhou, WANG Hong, DING Hong, et al. Progress in high-throughput materials synthesis and characterization[J]. Science & Technology Review, 2015, 33(10): 31–49. doi: 10.3981/j.issn.1000-7857.2015.10.003.
    [4]
    都仕, 张宋奇, 王立权, 等. 高分子材料基因组——高分子研发的新方法[J]. 高分子学报, 2022, 53(6): 592–607. doi: 10.11777/j.issn1000-3304.2021.21404.

    DU Shi, ZHANG Songqi, WANG Liquan, et al. Polymer genome approach: A new method for research and development of polymers[J]. Acta Polymerica Sinica, 2022, 53(6): 592–607. doi: 10.11777/j.issn1000-3304.2021.21404.
    [5]
    宫祥瑞, 蒋滢. 机器学习在高分子材料基因组研究中的进展与挑战[J]. 高分子学报, 2022, 53(11): 1287–1300. doi: 10.11777/j.issn1000-3304.2022.22094.

    GONG Xiangrui and JIANG Ying. Advances and challenges of machine learning in polymer material genomes[J]. Acta Polymerica Sinica, 2022, 53(11): 1287–1300. doi: 10.11777/j.issn1000-3304.2022.22094.
    [6]
    刘伦洋, 丁芳, 李云琦. 高分子材料大数据研究: 共性基础、进展及挑战[J]. 高分子学报, 2022, 53(6): 564–580. doi: 10.11777/j.issn1000-3304.2021.21360.

    LIU Lunyang, DING Fang, and LI Yunqi. Big data approach on polymer materials: Fundamental, progress and challenge[J]. Acta Polymerica Sinica, 2022, 53(6): 564–580. doi: 10.11777/j.issn1000-3304.2021.21360.
    [7]
    李云琦, 刘伦洋, 陈文多, 等. 材料基因组学的发展现状、研究思路与建议[J]. 中国科学: 化学, 2018, 48(3): 243–255. doi: 10.1360/N032017-00182.

    LI Yunqi, LIU Lunyang, CHEN Wenduo, et al. Materials genome: Research progress, challenges and outlook[J]. Scientia Sinica (Chimica), 2018, 48(3): 243–255. doi: 10.1360/N032017-00182.
    [8]
    宿彦京, 付华栋, 白洋, 等. 中国材料基因工程研究进展[J]. 金属学报, 2020, 56(10): 1313–1323. doi: 10.11900/0412.1961.2020.00199.

    SU Yanjing, FU Huadong, BAI Yang, et al. Progress in materials genome engineering in China[J]. Acta Metallurgica Sinica, 2020, 56(10): 1313–1323. doi: 10.11900/0412.1961.2020.00199.
    [9]
    戚兴怡, 胡耀峰, 王若愚, 等. 机器学习在新材料筛选方面的应用进展[J]. 化学学报, 2023, 81(2): 158–174. doi: 10.6023/A22110446.

    QI Xingyi, HU Yaofeng, WANG Ruoyu, et al. Recent advance of machine learning in selecting new materials[J]. Acta Chimica Sinica, 2023, 81(2): 158–174. doi: 10.6023/A22110446.
    [10]
    谢建新, 宿彦京, 薛德祯, 等. 机器学习在材料研发中的应用[J]. 金属学报, 2021, 57(11): 1343–1361. doi: 10.11900/0412.1961.2021.00357.

    XIE Jianxin, SU Yanjing, XUE Dezhen, et al. Machine learning for materials research and development[J]. Acta Metallurgica Sinica, 2021, 57(11): 1343–1361. doi: 10.11900/0412.1961.2021.00357.
    [11]
    仲陆祎, 权斌, 车仁超, 等. 基于机器学习的羰基铁/四氧化三铁复合吸波材料的优化设计[J]. 中国材料进展, 2024, 43(7): 652–657. doi: 10.7502/j.issn.1674-3962.202209040.

    ZHONG Luyi, QUAN Bin, CHE Renchao, et al. Optimal design of microwave absorbing material of carbonyl iron/ferroferric oxide composite via machine learning[J]. Materials China, 2024, 43(7): 652–657. doi: 10.7502/j.issn.1674-3962.202209040.
    [12]
    蔡长旭. 基于机器学习的吸波材料优化研究[D]. [硕士论文], 电子科技大学, 2023. doi: 10.27005/d.cnki.gdzku.2023.001834.

    CAI Changxu. Research on optimization of absorbing materials basedon machine learning[D]. [Master dissertation], University of Electronic Science and Technology of China, 2023. doi: 10.27005/d.cnki.gdzku.2023.001834.
    [13]
    韩玲艳. 基于机器学习的吸波材料优化设计方法[D]. [硕士论文], 华东师范大学, 2020. doi: 10.27149/d.cnki.ghdsu.2020.000740.

    HAN Lingyan. Machine learning – based optimal design methods of absorbing materials[D]. [Master dissertation], East China Normal University, 2020. doi: 10.27149/d.cnki.ghdsu.2020.000740.
    [14]
    张引, 陈敏, 廖小飞. 大数据应用的现状与展望[J]. 计算机研究与发展, 2013, 50(S2): 216–233.

    ZHANG Yin, CHEN Min, and LIAO Xiaofei. Big data applications: A survey[J]. Journal of Computer Research and Development, 2013, 50(S2): 216–233.
    [15]
    丁兆云, 贾焰, 周斌. 微博数据挖掘研究综述[J]. 计算机研究与发展, 2014, 51(4): 691–706. doi: 10.7544/issn1000-1239.2014.20130079.

    DING Zhaoyun, JIA Yan, and ZHOU Bin. Survey of data mining for microblogs[J]. Journal of Computer Research and Development, 2014, 51(4): 691–706. doi: 10.7544/issn1000-1239.2014.20130079.
    [16]
    贺玲, 吴玲达, 蔡益朝. 数据挖掘中的聚类算法综述[J]. 计算机应用研究, 2007, 24(1): 10–13. doi: 10.3969/j.issn.1001-3695.2007.01.003.

    HE Ling, WU Lingda, and CAI Yichao. Survey of clustering algorithms in data mining[J]. Application Research of Computers, 2007, 24(1): 10–13. doi: 10.3969/j.issn.1001-3695.2007.01.003.
    [17]
    QU Ning, SUN Hanxu, SUN Yuyao, et al. 2D/2D coupled MOF/Fe composite metamaterials enable robust ultra–broadband microwave absorption[J]. Nature Communications, 2024, 15(1): 5642. doi: 10.1038/s41467-024-49762-4.
    [18]
    WANG Yanli, YANG Shuhao, WANG Huiya, et al. Hollow porous CoNi/C composite nanomaterials derived from MOFs for efficient and lightweight electromagnetic wave absorber[J]. Carbon, 2020, 167: 485–494. doi: 10.1016/j.carbon.2020.06.014.
    [19]
    CHEN Congjie, SHAN Zhen, TAO Shifei, et al. Atomic tuning in electrically conducting bimetallic organic frameworks for controllable electromagnetic wave absorption[J]. Advanced Functional Materials, 2023, 33(45): 2305082. doi: 10.1002/adfm.202305082.
    [20]
    韩国栋, 孙勇, 周俊祥, 等. 多金属MOF衍生多孔碳微波吸收性能研究进展[J]. 空军工程大学学报, 2024, 25(1): 1–10. doi: 10.3969/j.issn.2097-1915.2024.01.001.

    HAN Guodong, SUN Yong, ZHOU Junxiang, et al. Research progress on microwave absorption performance of multi-metal MOF-derived porous carbon[J]. Journal of Air Force Engineering University, 2024, 25(1): 1–10. doi: 10.3969/j.issn.2097-1915.2024.01.001.
    [21]
    韩国栋, 孙勇, 周俊祥, 等. 单金属MOF衍生多孔碳微波吸收性能研究进展[J]. 空军工程大学学报, 2023, 24(6): 2–14. doi: 10.3969/j.issn.2097-1915.2023.06.001.

    HAN Guodong, SUN Yong, ZHOU Junxiang, et al. Research progress on microwave absorption performance of monometallic MOF-derived porous carbon[J]. Journal of Air Force Engineering University, 2023, 24(6): 2–14. doi: 10.3969/j.issn.2097-1915.2023.06.001.
    [22]
    席嘉彬. 高性能碳基电磁屏蔽及吸波材料的研究[D]. [博士论文], 浙江大学, 2018.

    XI Jiabin. Carbon-based materials for high-performance electromagnetic interference shielding and microwave absorption[D]. [Ph. D. dissertation], Zhejiang University, 2018.
    [23]
    谭俊杰, 赵国梁, 徐晨. 陶瓷基吸波复合材料研究进展[J]. 陶瓷学报, 2023, 44(5): 849–863. doi: 10.13957/j.cnki.tcxb.2023.05.002.

    TAN Junjie, ZHAO Guoliang, and XU Chen. Progress of ceramic-based composites for microwave absorption[J]. Journal of Ceramics, 2023, 44(5): 849–863. doi: 10.13957/j.cnki.tcxb.2023.05.002.
    [24]
    DU Yuzhang, LIU Yichen, WANG Aoao, et al. Research progress and future perspectives on electromagnetic wave absorption of fibrous materials[J]. iScience, 2023, 26(10): 107873. doi: 10.1016/j.isci.2023.107873.
    [25]
    侯冠一, 刘军, 张立群. 计算材料学在高分子材料领域的研究进展与发展趋势[J]. 高分子学报, 2023, 54(2): 166–185. doi: 10.11777/j.issn1000-3304.2022.22181.

    HOU Guanyi, LIU Jun, and ZHANG Liqun. Research progress and development of computational materials science for the polymeric materials[J]. Acta Polymerica Sinica, 2023, 54(2): 166–185. doi: 10.11777/j.issn1000-3304.2022.22181.
    [26]
    蔡利梅. 模式识别: 使用MATLAB分析与实现[M]. 北京: 清华大学出版社, 2022: 3.

    CAI Limei. Pattern Recognition: Analyzing and Implementing with MATLAB[M]. Beijing: Tsinghua University Press, 2022: 3.
    [27]
    温正, 孙华克. MATLAB智能算法[M]. 北京: 清华大学出版社, 2017.

    WEN Zheng and SUN Huake. MATLAB Intelligent Algorithm[M]. Beijing: Tsinghua University Press, 2017.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(6)

    Article Metrics

    Article views (66) PDF downloads(6) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return