Citation: | ZHENG Qinghe, LIU Fanglin, YU Lisu, JIANG Weiwei, HUANG Chongwen, LI Bin, SHU Feng. An Improved Modulation Recognition Method Based on Hybrid Kolmogorov-Arnold Convolutional Neural Network[J]. Journal of Electronics & Information Technology, 2025, 47(8): 2584-2597. doi: 10.11999/JEIT250161 |
[1] |
尤肖虎, 张川, 谈晓思, 等. 基于AI的5G技术——研究方向与范例[J]. 中国科学: 信息科学, 2018, 48(12): 1589–1602. doi: 10.1360/N112018-00174.
YOU Xiaohu, ZHANG Chuan, TAN Xiaosi, et al. AI for 5G: Research directions and paradigms[J]. Scientia Sinica: Informationis, 2018, 48(12): 1589–1602. doi: 10.1360/N112018-00174.
|
[2] |
杨伟超, 杜宇, 文伟, 等. 基于多重分形谱智能分析的卫星信号调制识别研究[J]. 电子学报, 2022, 50(6): 1336–1343. doi: 10.12263/DZXB.20210882.
YANG Weichao, DU Yu, WEN Wei, et al. Modulation recognition of satellite communication signal based on intelligent analysis of multi-fractal spectrum[J]. Acta Electronica Sinica, 2022, 50(6): 1336–1343. doi: 10.12263/DZXB.20210882.
|
[3] |
王华华, 张睿哲, 黄永洪. 基于生成式对抗网络和多模态注意力机制的扩频与常规调制信号识别方法[J]. 电子与信息学报, 2024, 46(4): 1212–1221. doi: 10.11999/JEIT230518.
WANG Huahua, ZHANG Ruizhe, and HUANG Yonghong. Spread spectrum and conventional modulation signal recognition method based on generative adversarial network and multi-modal attention mechanism[J]. Journal of Electronics & Information Technology, 2024, 46(4): 1212–1221. doi: 10.11999/JEIT230518.
|
[4] |
张天骐, 汪锐, 安泽亮, 等. 基于多任务学习的MIMO-OFDM信噪比估计与调制识别[J]. 北京邮电大学学报, 2022, 45(6): 95–100,121. doi: 10.13190/j.jbupt.2022-050.
ZHANG Tianqi, WANG Rui, AN Zeliang, et al. MIMO-OFDM signal to noise ratio estimation and modulation recognition based on multi task learning[J]. Journal of Beijing University of Posts and Telecommunications, 2022, 45(6): 95–100,121. doi: 10.13190/j.jbupt.2022-050.
|
[5] |
WANG Danyang, QI Peihan, FU Qifan, et al. Multiple high-order cumulants-based spectrum sensing in full-duplex-enabled cognitive IoT networks[J]. IEEE Internet of Things Journal, 2021, 8(11): 9330–9343. doi: 10.1109/JIOT.2021.3055782.
|
[6] |
BAI Jiansheng, YAO Jinjie, GUO Yurong, et al. Automatic modulation classification in impulsive noise: Log-domain 3-D constellation diagrams and multiscale dual-convolutional 3DCNN[J]. IEEE Transactions on Cognitive Communications and Networking, 2024, 10(4): 1204–1217. doi: 10.1109/TCCN.2024.3375510.
|
[7] |
LI Lin, ZHU Yaxin, and ZHU Zhigang. Automatic modulation classification using ResNext-GRU with deep feature fusion[J]. IEEE Transactions on Instrumentation and Measurement, 2023, 72: 2519710. doi: 10.1109/TIM.2023.3290301.
|
[8] |
李东瑾, 杨瑞娟, 李晓柏, 等. 基于核协同表示与鉴别投影的辐射源调制识别[J]. 电子学报, 2020, 48(9): 1695–1702. doi: 10.3969/j.issn.0372-2112.2020.09.005.
LI Dongjin, YANG Ruijuan, LI Xiaobai, et al. Emitter signal modulation recognition based on kernel collaborative representation and discriminative projection[J]. Acta Electronica Sinica, 2020, 48(9): 1695–1702. doi: 10.3969/j.issn.0372-2112.2020.09.005.
|
[9] |
YANG Faquan, YANG Ling, WANG Dong, et al. Method of modulation recognition based on combination algorithm of K-means clustering and grading training SVM[J]. China Communications, 2018, 15(12): 55–63. doi: 10.12676/j.cc.2018.12.004.
|
[10] |
占锦敏, 赵知劲, 王李军. 基于随机森林的通信信号识别算法[J]. 杭州电子科技大学学报: 自然科学版, 2020, 40(5): 1–6. doi: 10.13954/j.cnki.hdu.2020.05.001.
ZHAN Jinmin, ZHAO Zhijin, and WANG Lijun. Signals identification algorithm based on random forest[J]. Journal of Hangzhou Dianzi University: Natural Sciences, 2020, 40(5): 1–6. doi: 10.13954/j.cnki.hdu.2020.05.001.
|
[11] |
左晓亚, 张俊杰, 姚如贵, 等. 残差膨胀卷积结构下的多模态特征调制方式识别[J]. 信号处理, 2023, 39(11): 2013–2021. doi: 10.16798/j.issn.1003-0530.2023.11.010.
ZUO Xiaoya, ZHANG Junjie, YAO Rugui, et al. Automatic modulation classification based on residual dilated-convolution and multi-feature[J]. Journal of Signal Processing, 2023, 39(11): 2013–2021. doi: 10.16798/j.issn.1003-0530.2023.11.010.
|
[12] |
KE Ziqi and VIKALO H. Real-time radio technology and modulation classification via an LSTM auto-encoder[J]. IEEE Transactions on Wireless Communications, 2022, 21(1): 370–382. doi: 10.1109/TWC.2021.3095855.
|
[13] |
GHASEMZADEH P, HEMPEL M, WANG Honggang, et al. GGCNN: An efficiency-maximizing gated graph convolutional neural network architecture for automatic modulation identification[J]. IEEE Transactions on Wireless Communications, 2023, 22(9): 6033–6047. doi: 10.1109/TWC.2023.3239311.
|
[14] |
ZHENG Qinghe, ZHAO Penghui, WANG Hongjun, et al. Fine-grained modulation classification using multi-scale radio transformer with dual-channel representation[J]. IEEE Communications Letters, 2022, 26(6): 1298–1302. doi: 10.1109/LCOMM.2022.3145647.
|
[15] |
ZHANG Zufan, LUO Hao, WANG Chun, et al. Automatic modulation classification using CNN-LSTM based dual-stream structure[J]. IEEE Transactions on Vehicular Technology, 2020, 69(11): 13521–13531. doi: 10.1109/TVT.2020.3030018.
|
[16] |
QI Peihan, ZHOU Xiaoyu, ZHENG Shilian, et al. Automatic modulation classification based on deep residual networks with multimodal information[J]. IEEE Transactions on Cognitive Communications and Networking, 2021, 7(1): 21–33. doi: 10.1109/TCCN.2020.3023145.
|
[17] |
肖易寒, 王亮, 郭玉霞. 基于去噪卷积神经网络的雷达信号调制类型识别[J]. 电子与信息学报, 2021, 43(8): 2300–2307. doi: 10.11999/JEIT200506.
XIAO Yihan, WANG Liang, and GUO Yuxia. Radar signal modulation type recognition based on denoising convolutional neural network[J]. Journal of Electronics & Information Technology, 2021, 43(8): 2300–2307. doi: 10.11999/JEIT200506.
|
[18] |
O’SHEA T J, CORGAN J, and CLANCY T C. Convolutional radio modulation recognition networks[C]. 17th International Conference on Engineering Applications of Neural Networks, Aberdeen, UK, 2016: 213–226. doi: 10.1007/978-3-319-44188-7_16.
|
[19] |
O’SHEA T J, ROY T, and CLANCY T C. Over-the-air deep learning based radio signal classification[J]. IEEE Journal of Selected Topics in Signal Processing, 2018, 12(1): 168–179. doi: 10.1109/JSTSP.2018.2797022.
|
[20] |
SNOAP J A, POPESCU D C, and SPOONER C M. Novel nonlinear neural-network layers for high performance and generalization in modulation-recognition applications[C]. MILCOM 2023-2023 IEEE Military Communications Conference, Boston, USA, 2023: 562–567. doi: 10.1109/MILCOM58377.2023.10356331.
|
[21] |
ZHENG Qinghe, TIAN Xinyu, YU Zhiguo, et al. DL-PR: Generalized automatic modulation classification method based on deep learning with priori regularization[J]. Engineering Applications of Artificial Intelligence, 2023, 122: 106082. doi: 10.1016/j.engappai.2023.106082.
|
[22] |
ZHENG Qinghe, SAPONARA S, TIAN Xinyu, et al. A real-time constellation image classification method of wireless communication signals based on the lightweight network MobileViT[J]. Cognitive Neurodynamics, 2024, 18(2): 659–671. doi: 10.1007/s11571-023-10015-7.
|