Citation: | LI Chenchen, JIN Hai, WU Minrui, XIAO Jiang. HNN4RP: Heterogeneous Graph Neural Network for Rug Pull Detection on Ethereum[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250160 |
[1] |
Ethereum browser[EB/OL]. https://etherscan.io/chart/address, 2023.
|
[2] |
JIN Hai and XIAO Jiang. Towards trustworthy blockchain systems in the era of "Internet of value": Development, challenges, and future trends[J]. Science China Information Sciences, 2022, 65(5): 153101. doi: 10.1007/s11432-020-3183-0.
|
[3] |
BARTOLETTI M, CARTA S, CIMOLI T, et al. Dissecting Ponzi schemes on Ethereum: Identification, analysis, and impact[J]. Future Generation Computer Systems, 2020, 102: 259–277. doi: 10.1016/j.future.2019.08.014.
|
[4] |
BOSHMAF Y, ELVITIGALA C, AL JAWAHERI H, et al. Investigating MMM Ponzi scheme on bitcoin[C]. The 15th ACM Asia Conference on Computer and Communications Security (ASIA CCS’20), Taipei, China, 2020: 519–530. doi: 10.1145/3320269.3384719.
|
[5] |
CHEN Weili, GUO Xiongfeng, CHEN Zhiguang, et al. Phishing scam detection on ethereum: Towards financial security for blockchain ecosystem[C]. The 29th International Joint Conference on Artificial Intelligence (IJCAI’20), Yokohama, Japan, 2021: 621.
|
[6] |
ZHANG Shijie, CHENG Ru, LIU Xinpeng, et al. Seer: Accelerating blockchain transaction execution by fine-grained branch prediction[J]. Proceedings of the VLDB Endowment, 2024, 18(3): 822–835. doi: 10.14778/3712221.3712245.
|
[7] |
ZHANG Shijie, XIAO Jiang, WU Enping, et al. MorphDAG: A workload-aware elastic DAG-based blockchain[J]. IEEE Transactions on Knowledge and Data Engineering, 2024, 36(10): 5249–5264. doi: 10.1109/TKDE.2024.3382743.
|
[8] |
CERNERA F, LA MORGIA M, MEI A, et al. Token spammers, rug pulls, and sniper bots: An analysis of the ecosystem of tokens in Ethereum and in the Binance smart chain (BNB)[C]. The 32nd USENIX Conference on Security Symposium (USENIX Security 2023), Anaheim, USA, 2023: 188.
|
[9] |
陈锦富, 冯乔伟, 蔡赛华, 等. 基于形式化方法的区块链系统漏洞检测模型[J]. 软件学报, 2024, 35(9): 4193–4217. doi: 10.13328/j.cnki.jos.007133.
CHEN Jinfu, FENG Qiaowei, CAI Saihua, et al. Vulnerability detection model for blockchain systems based on formal method[J]. Journal of Software, 2024, 35(9): 4193–4217. doi: 10.13328/j.cnki.jos.007133.
|
[10] |
王利朋, 关志, 李青山, 等. 区块链数据安全服务综述[J]. 软件学报, 2023, 34(1): 1–32. doi: 10.13328/j.cnki.jos.006402.
WANG Lipeng, GUAN Zhi, LI Qingshan, et al. Survey on blockchain-based security services[J]. Journal of Software, 2023, 34(1): 1–32. doi: 10.13328/j.cnki.jos.006402.
|
[11] |
郭加树, 王琪, 李择亚, 等. 基于双层孪生神经网络的区块链智能合约分类方法[J]. 电子与信息学报, 2024, 46(3): 1060–1068. doi: 10.11999/JEIT230185.
GUO Jiashu, WANG Qi, LI Zeya, et al. Blockchain smart contract classification method based on double siamese neural network[J]. Journal of Electronics & Information Technology, 2024, 46(3): 1060–1068. doi: 10.11999/JEIT230185.
|
[12] |
徐恪, 凌思通, 李琦, 等. 基于区块链的网络安全体系结构与关键技术研究进展[J]. 计算机学报, 2021, 44(1): 55–83. doi: 10.11897/SP.J.1016.2021.00055.
XU Ke, LING Sitong, LI Qi, et al. Research progress of network security architecture and key technologies based on blockchain[J]. Chinese Journal of Computers, 2021, 44(1): 55–83. doi: 10.11897/SP.J.1016.2021.00055.
|
[13] |
CHEN Huashan, PENDLETON M, NJILLA L, et al. A survey on ethereum systems security: Vulnerabilities, attacks, and defenses[J]. ACM Computing Surveys, 2020, 53(3): 67. doi: 10.1145/3391195.
|
[14] |
WU Jiajing, LIU Jieli, ZHAO Yijing, et al. Analysis of cryptocurrency transactions from a network perspective: An overview[J]. Journal of Network and Computer Applications, 2021, 190: 103139. doi: 10.1016/j.jnca.2021.103139.
|
[15] |
ZHANG Peiyun, LI Chenxi, ZHOU Mengchu, et al. Transaction transmission model for blockchain channels based on non-cooperative games[J]. Science China Information Sciences, 2023, 66(1): 112105. doi: 10.1007/s11432-021-3362-9.
|
[16] |
TOYODA K, OHTSUKI T, and MATHIOPOULOS P T. Identification of high yielding investment programs in bitcoin via transactions pattern analysis[C]. 2017 IEEE Global Communications Conference (GLOBECOM 2017), Singapore, Singapore, 2017: 1–6. doi: 10.1109/GLOCOM.2017.8254420.
|
[17] |
CHEN Weili, ZHENG Zibin, CUI Jiahui, et al. Detecting ponzi schemes on ethereum: Towards healthier blockchain technology[C]. The 2018 World Wide Web Conference, Lyon, France, 2018: 1409–1418. doi: 10.1145/3178876.3186046.
|
[18] |
WU Jiajing, YUAN Qi, LIN Dan, et al. Who are the phishers? Phishing scam detection on Ethereum via network embedding[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2022, 52(2): 1156–1166. doi: 10.1109/TSMC.2020.3016821.
|
[19] |
NEUDECKER T and HARTENSTEIN H. Could network information facilitate address clustering in bitcoin?[C]. FC 2017 International Workshops, WAHC, BITCOIN, VOTING, WTSC, and TA on Financial Cryptography and Data Security, Sliema, Malta, 2017: 155–169. doi: 10.1007/978-3-319-70278-0_9.
|
[20] |
SPAGNUOLO M, MAGGI F, and ZANERO S. BitIodine: Extracting intelligence from the bitcoin network[C]. The 18th International Conference on Financial Cryptography and Data Security, Christ Church, Barbados, 2014: 457–468. doi: 10.1007/978-3-662-45472-5_29.
|
[21] |
OBER M, KATZENBEISSER S, and HAMACHER K. Structure and anonymity of the bitcoin transaction graph[J]. Future Internet, 2013, 5(2): 237–250. doi: 10.3390/fi5020237.
|
[22] |
RON D and SHAMIR A. How did dread pirate roberts acquire and protect his bitcoin wealth?[C]. The 18th International Conference on Financial Cryptography and Data Security Workshops (FC’14), Christ Church, Barbados, 2014: 3–15. doi: 10.1007/978-3-662-44774-1_1.
|
[23] |
CHEN Weili, WU Jun, ZHENG Zibin, et al. Market manipulation of bitcoin: Evidence from mining the Mt. Gox transaction network[C]. The 38th IEEE Conference on Computer Communications (INFOCOM’2019), Paris, France, 2019: 964–972. doi: 10.1109/INFOCOM.2019.8737364.
|
[24] |
LIN Dan, WU Jiajing, YUAN Qi, et al. Modeling and understanding ethereum transaction records via a complex network approach[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2020, 67(11): 2737–2741. doi: 10.1109/TCSII.2020.2968376.
|
[25] |
LIN Dan, WU Jiajing, YUAN Qi, et al. T-EDGE: Temporal WEighted MultiDiGraph embedding for ethereum transaction network analysis[J]. Frontiers in Physics, 2020, 8: 204. doi: 10.3389/fphy.2020.00204.
|
[26] |
SHEN Jie, ZHOU Jiajun, XIE Yunyi, et al. Identity inference on blockchain using graph neural network[C]. Tthe 3rd International Conference on Blockchain and Trustworthy Systems, Guangzhou, China, 2021: 3–17. doi: 10.1007/978-981-16-7993-3_1.
|
[27] |
LI Sijia, GOU Gaopeng, LIU Chang, et al. TTAGN: Temporal transaction aggregation graph network for ethereum phishing scams detection[C]. The ACM Web Conference 2022 (WWW’22), Lyon, France, 2022: 661–669. doi: 10.1145/3485447.3512226.
|
[28] |
ZHOU Jiajun, HU Chenkai, CHI Jianlei, et al. Behavior-aware account de-anonymization on ethereum interaction graph[J]. IEEE Transactions on Information Forensics and Security, 2022, 17: 3433–3448. doi: 10.1109/TIFS.2022.3208471.
|
[29] |
MAKRIDIS C A, FRÖWIS M, SRIDHAR K, et al. The rise of decentralized cryptocurrency exchanges: Evaluating the role of airdrops and governance tokens[J]. Journal of Corporate Finance, 2023, 79: 102358. doi: 10.1016/j.jcorpfin.2023.102358.
|
[30] |
WANG Chaofan, DAI Xiaohai, XIAO Jiang, et al. Demystifying ethereum account diversity: Observations, models and analysis[J]. Frontiers of Computer Science, 2022, 16(4): 164505. doi: 10.1007/s11704-021-0221-3.
|
[31] |
JIN Hai, LI Chenchen, XIAO Jiang, et al. Detecting arbitrage on ethereum through feature fusion and positive-unlabeled learning[J]. IEEE Journal on Selected Areas in Communications, 2022, 40(12): 3660–3671. doi: 10.1109/JSAC.2022.3213335.
|
[32] |
HU Jiahao, CAO Mingpei, ZHANG Xizhe, et al. Temporal weighted heterogeneous multigraph embedding for ethereum phishing scams detection[C]. The 26th International Conference on Computer Supported Cooperative Work in Design (CSCWD’23), Rio de Janeiro, Brazil, 2023: 1208–1213. doi: 10.1109/CSCWD57460.2023.10152679.
|
[33] |
TAN Runnan, TAN Qingfeng, ZHANG Peng, et al. Graph neural network for ethereum fraud detection[C]. 2021 IEEE International Conference on Big Knowledge (ICBK'21), Auckland, New Zealand, 2021: 78–85. doi: 10.1109/ICKG52313.2021.00020.
|
[34] |
ZHOU Chenyu, CHEN Hongzhou, WU Hao, et al. ARTEMIS: Detecting airdrop hunters in NFT markets with a graph learning system[C]. The ACM Web Conference 2024 (WWW’24), Singapore, Singapore, 2024: 1824–1834. doi: 10.1145/3589334.3645597.
|
[35] |
XIA Pengcheng, WANG Haoyu, GAO Bingyu, et al. Trade or Trick?: Detecting and characterizing scam tokens on uniswap decentralized exchange[J]. Proceedings of the ACM on Measurement and Analysis of Computing Systems, 2021, 5(3): 39. doi: 10.1145/3491051.
|
[36] |
MAZORRA B, ADAN V, and DAZA V. Do not rug on me: Leveraging machine learning techniques for automated scam detection[J]. Mathematics, 2022, 10(6): 949. doi: 10.3390/math10060949.
|
[37] |
NGUYEN M H, HUYNH P D, DAU S H, et al. Rug-pull malicious token detection on blockchain using supervised learning with feature engineering[C]. 2023 Australasian Computer Science Week (ACSW’23), Melbourne, Australia, 2023: 72–81. doi: 10.1145/3579375.3579385.
|
[38] |
VAPNIK V N. An overview of statistical learning theory[J]. IEEE Transactions on Neural Networks, 1999, 10(5): 988–999. doi: 10.1109/72.788640.
|
[39] |
KE Guolin, MENG Qi, FINLEY T, et al. LightGBM: A highly efficient gradient boosting decision tree[C]. The 31st International Conference on Neural Information Processing Systems (NIPS’17), Long Beach, USA, 2017: 3149–3157.
|
[40] |
PEROZZI B, AL-RFOU R, and SKIENA S. DeepWalk: Online learning of social representations[C]. The 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD’14), New York, USA, 2014: 701–710. doi: 10.1145/2623330.2623732.
|
[41] |
GROVER A and LESKOVEC J. node2vec: Scalable feature learning for networks[C]. The 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD’16), San Francisco, USA, 2016: 855–864. doi: 10.1145/2939672.2939754.
|
[42] |
XU Keyulu, HU Weihua, LESKOVEC J, et al. How powerful are graph neural networks?[C]. The 7th International Conference on Learning Representations (ICLR’19), New Orleans, USA, 2019.
|
[43] |
VELIČKOVIĆ P, CUCURULL G, CASANOVA A, et al. Graph attention networks[C]. The 6th International Conference on Learning Representations (ICLR’18), Vancouver, Canada, 2018: 10–48550.
|
[44] |
HAMILTON W L, YING R, and LESKOVEC J. Inductive representation learning on large graphs[C]. The 31st International Conference on Neural Information Processing Systems (NIPS’17), Long Beach, USA, 2017: 1025–1035.
|
[45] |
YUN S, JEONG M, KIM R, et al. Graph transfomer networks[C]. The 33rd International Conference on Neural Information Processing Systems (NeurIPS’19), Vancouver, Canada, 2019: 1073.
|