Citation: | MA Mou, CAI Mingjiao, SHEN Yu, ZHOU Fang, JIANG Junzheng. Hyperspectral Image Denoising Algorithm via Joint Low-Rank Tensor Decomposition and Product Graph Modeling[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250130 |
[1] |
WU Yongjun, GAO Guangjun, and CUI Can. Improved wavelet denoising by non-convex sparse regularization under double wavelet domains[J]. IEEE Access, 2019, 7: 30659–30671. doi: 10.1109/access.2019.2903125.
|
[2] |
YUAN Qiangqiang, ZHANG Liangpei, and SHEN Huanfeng. Hyperspectral image denoising employing a spectral–spatial adaptive total variation model[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(10): 3660–3677. doi: 10.1109/tgrs.2012.2185054.
|
[3] |
HE Wei, ZHANG Hongyan, ZHANG Liangpei, et al. Hyperspectral image denoising via noise-adjusted iterative low-rank matrix approximation[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8(6): 3050–3061. doi: 10.1109/jstars.2015.2398433.
|
[4] |
WANG Mengdi, YU Jing, XUE Jinghao, et al. Denoising of hyperspectral images using group low-rank representation[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2016, 9(9): 4420–4427. doi: 10.1109/JSTARS.2016.2531178.
|
[5] |
YUAN Qiangqiang, ZHANG Qiang, LI Jie, et al. Hyperspectral image denoising employing a spatial–spectral deep residual convolutional neural network[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(2): 1205–1218. doi: 10.1109/TGRS.2018.2865197.
|
[6] |
TIAN Xin, XIE Kun, and ZHANG Hanling. Hyperspectral image denoising via $ {L_0} $ regularized low-rank tucker decomposition[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2024, 17: 3297–3313. doi: 10.1109/jstars.2023.3342408.
|
[7] |
ZHOU Fang, JIANG Junzheng, and TAY D B. Distributed reconstruction of time-varying graph signals via a modified Newton’s method[J]. Journal of the Franklin Institute, 2022, 359(16): 9401–9421. doi: 10.1016/j.jfranklin.2022.08.059.
|
[8] |
HU Wei, PANG Jiahao, LIU Xianming, et al. Graph signal processing for geometric data and beyond: Theory and applications[J]. IEEE Transactions on Multimedia, 2022, 24: 3961–3977. doi: 10.1109/tmm.2021.3111440.
|
[9] |
LEUS G, MARQUES A G, MOURA J M F, et al. Graph signal processing: History, development, impact, and outlook[J]. IEEE Signal Processing Magazine, 2023, 40(4): 49–60. doi: 10.1109/msp.2023.3262906.
|
[10] |
潘奕洁. 基于超像素分割与低秩张量近似的高光谱图像去噪算法研究[D]. [硕士论文], 电子科技大学, 2024. doi: 10.27005/d.cnki.gdzku.2024.003710.
PAN Yijie. Hyperspectral image denoising based on superpixel segmentation and low-rank tensor approximation[D]. [Master dissertation], University of Electronic Science and Technology of China, 2024. doi: 10.27005/d.cnki.gdzku.2024.003710.
|
[11] |
XIAO Chuanfu and YANG Chao. RA-HOOI: Rank-adaptive higher-order orthogonal iteration for the fixed-accuracy low multilinear-rank approximation of tensors[J]. Applied Numerical Mathematics, 2024, 201: 290–300. doi: 10.1016/j.apnum.2024.03.004.
|
[12] |
WRIGHT S J, NOWAK R D, and FIGUEIREDO M A T. Sparse reconstruction by separable approximation[J]. IEEE Transactions on Signal Processing, 2009, 57(7): 2479–2493. doi: 10.1109/tsp.2009.2016892.
|
[13] |
HE Wei, ZHANG Hongyan, ZHANG Liangpei, et al. Total-variation-regularized low-rank matrix factorization for hyperspectral image restoration[J]. IEEE Transactions on Geoscience Remote Sensing, 2016, 54(1): 178–188. doi: 10.1109/tgrs.2015.2452812.
|
[14] |
WANG Yao, PENG Jiangjun, ZHAO Qian, et al. Hyperspectral image restoration via total variation regularized low-rank tensor decomposition[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11(4): 1227–1243. doi: 10.1109/jstars.2017.2779539.
|
[15] |
ZHUANG Lina, FU Xiyou, NG M K, et al. Hyperspectral image denoising based on global and nonlocal low-rank factorizations[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(12): 10438–10454. doi: 10.1109/tgrs.2020.3046038.
|
[16] |
HE Chengxun, SUN Le, HUANG Wei, et al. TSLRLN: Tensor subspace low-rank learning with non-local prior for hyperspectral image mixed denoising[J]. Signal Processing, 2021, 184: 108060. doi: 10.1016/j.sigpro.2021.108060.
|
[17] |
HE Wei, YAO Quanming, LI Chao, et al. Non-local meets global: An iterative paradigm for hyperspectral image restoration[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(4): 2089–2107. doi: 10.1109/tpami.2020.3027563.
|
[18] |
蔡明娇, 蒋俊正, 蔡万源, 等. 张量分解和自适应图全变分的高光谱图像去噪[J]. 西安电子科技大学学报, 2024, 51(2): 157–169. doi: 10.19665/j.issn1001-2400.20230412.
CAI Mingjiao, JIANG Junzheng, CAI Wanyuan, et al. Hyperspectral image denoising based on tensor decomposition and adaptive weight graph total variation[J]. Journal of Xidian University, 2024, 51(2): 157–169. doi: 10.19665/j.issn1001-2400.20230412.
|
[19] |
ZHANG Hongyan, HE Wei, ZHANG Liangpei, et al. Hyperspectral image restoration using low-rank matrix recovery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(8): 4729–4743. doi: 10.1109/tgrs.2013.2284280.
|
[20] |
MAFFEI A, HAUT J M, PAOLETTI M E, et al. A single model CNN for hyperspectral image denoising[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(4): 2516–2529. doi: 10.1109/TGRS.2019.2952062.
|
[21] |
HYDICE Urban Dataset[EB/OL]. https://rslab.ut.ac.ir/data, 2024.
|
[22] |
RASTI B, ULFARSSON M O, and SVEINSSON J R. Hyperspectral subspace identification using SURE[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(12): 2481–2485. doi: 10.1109/lgrs.2015.2485999.
|