Citation: | WANG Yu, ZHANG Xuxiu. A Multi-Agent Path Finding Strategy Combining Selective Communication and Conflict Resolution[J]. Journal of Electronics & Information Technology, 2025, 47(8): 2830-2840. doi: 10.11999/JEIT250122 |
[1] |
BETALO M L, LENG Supeng, SEID A M, et al. Dynamic charging and path planning for UAV-powered rechargeable WSNs using multi-agent deep reinforcement learning[J]. IEEE Transactions on Automation Science and Engineering, 2025, 22: 15610–15626. doi: 10.1109/TASE.2025.3558945.
|
[2] |
司明, 邬伯藩, 胡灿, 等. 智能仓储交通信号与多AGV路径规划协同控制方法[J]. 计算机工程与应用, 2024, 60(11): 290–297. doi: 10.3778/j.issn.1002-8331.2310-0113.
SI Ming, WU Bofan, HU Can, et al. Collaborative control method of intelligent warehouse traffic signal and multi-AGV path planning[J]. Computer Engineering and Applications, 2024, 60(11): 290–297. doi: 10.3778/j.issn.1002-8331.2310-0113.
|
[3] |
WANG Zhaofei, WENG Zihao, WANG Jing, et al. An original medical logistics robot system design for the complex environment of hospitals with dynamic obstacles[J]. Robotic Intelligence and Automation, 2025, 45(2): 210–227. doi: 10.1108/RIA-03-2023-0029.
|
[4] |
刘志飞, 曹雷, 赖俊, 等. 多智能体路径规划综述[J]. 计算机工程与应用, 2022, 58(20): 43–62. doi: 10.3778/j.issn.1002-8331.2203-0467.
LIU Zhifei, CAO Lei, LAI Jun, et al. Overview of multi-agent path finding[J]. Computer Engineering and Applications, 2022, 58(20): 43–62. doi: 10.3778/j.issn.1002-8331.2203-0467.
|
[5] |
SHARON G, STERN R, FELNER A, et al. Conflict-based search for optimal multi-agent pathfinding[J]. Artificial Intelligence, 2015, 219: 40–66. doi: 10.1016/j.artint.2014.11.006.
|
[6] |
WALKER T T, STURTEVANT N R, FELNER A, et al. Conflict-based increasing cost search[C]. The 31rd International Conference on Automated Planning and Scheduling, Guangzhou, China, 2021: 385–395. doi: 10.1609/icaps.v31i1.15984.
|
[7] |
SARTORETTI G, KERR J, SHI Yunfei, et al. PRIMAL: Pathfinding via reinforcement and imitation multi-agent learning[J]. IEEE Robotics and Automation Letters, 2019, 4(3): 2378–2385. doi: 10.1109/LRA.2019.2903261.
|
[8] |
DAMANI M, LUO Zhiyao, WENZEL E, et al. PRIMAL2: Pathfinding via reinforcement and imitation multi-agent learning-lifelong[J]. IEEE Robotics and Automation Letters, 2021, 6(2): 2666–2673. doi: 10.1109/LRA.2021.3062803.
|
[9] |
LIU Zuxin, CHEN Baiming, ZHOU Hongyi, et al. MAPPER: Multi-agent path planning with evolutionary reinforcement learning in mixed dynamic environments[C]. 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems, Las Vegas, USA, 2020: 11748–11754. doi: 10.1109/IROS45743.2020.9340876.
|
[10] |
GUAN Huifeng, GAO Yuan, ZHAO Min, et al. AB-Mapper: Attention and BicNet based multi-agent path finding for dynamic crowded environment[J]. arXiv: 2110.00760, 2021.
|
[11] |
MA Ziyuan, LUO Yudong, and MA Hang. Distributed heuristic multi-agent path finding with communication[C]. 2021 IEEE International Conference on Robotics and Automation (ICRA), Xi’an, China, 2021: 8699–8705. doi: 10.48550/arXiv.2106.11365.
|
[12] |
MA Ziyuan, LUO Yudong, and PAN Jia. Learning selective communication for multi-agent path finding[J]. IEEE Robotics and Automation Letters, 2022, 7(2): 1455–1462. doi: 10.1109/LRA.2021.3139145.
|
[13] |
WANG Yutong, XIANG Bairan, HUANG Shinan, et al. SCRIMP: Scalable communication for reinforcement-and imitation-learning-based multi-agent pathfinding[C]. 2023 IEEE/RSJ International Conference on Intelligent Robots and Systems, Detroit, USA, 2023: 9301–9308. doi: 10.1109/IROS55552.2023.10342305.
|
[14] |
LIN Qiushi and MA Hang. SACHA: Soft actor-critic with heuristic-based attention for partially observable multi-agent path finding[J]. IEEE Robotics and Automation Letters, 2023, 8(8): 5100–5107. doi: 10.1109/LRA.2023.3292004.
|
[15] |
MA Jinchao and LIAN Defu. Attention-cooperated reinforcement learning for multi-agent path planning[M]. RAGE U K, GOYAL V, and REDDY P K. Database Systems for Advanced Applications. DASFAA 2022 International Workshops. Cham: Springer, 2022: 272–290. doi: 10.1007/978-3-031-11217-1_20.
|
[16] |
LI Wenhao, CHEN Hongjun, JIN Bo, et al. Multi-agent path finding with prioritized communication learning[C]. 2022 International Conference on Robotics and Automation, Philadelphia, USA, 2022: 10695–10701. doi: 10.1109/ICRA46639.2022.9811643.
|
[17] |
纪苗苗, 吴志彬. 考虑工人路径的多智能体强化学习空间众包任务分配方法[J]. 控制与决策, 2024, 39(1): 319–326. doi: 10.13195/j.kzyjc.2022.1319.
JI Miaomiao and WU Zhibin. A multi-agent reinforcement learning algorithm for spatial crowdsourcing task assignments considering workers’ path[J]. Control and Decision, 2024, 39(1): 319–326. doi: 10.13195/j.kzyjc.2022.1319.
|
[18] |
WANG Yutong, DUHAN T, LI Jiaoyang, et al. LNS2+RL: Combining Multi-agent Reinforcement Learning with Large Neighborhood Search in Multi-agent Path Finding[C]. The 39th AAAI Conference on Artificial Intelligence, Philadelphia, USA, 2025. doi: 10.1609/aaai.v39i22.34501.
|
[19] |
田华亭, 李涛, 秦颖. 基于A*改进算法的四向移动机器人路径搜索研究[J]. 控制与决策, 2017, 32(6): 1007–1012. doi: 10.13195/j.kzyjc.2016.0244.
TIAN Huating, LI Tao, and QIN Ying. Research of four-way mobile robot path search based on improved A* algorithm[J]. Control and Decision, 2017, 32(6): 1007–1012. doi: 10.13195/j.kzyjc.2016.0244.
|
[20] |
DING Ziluo, HUANG Tiejun, and LU Zongqing. Learning individually inferred communication for multi-agent cooperation[C]. The 34th International Conference on Neural Information Processing Systems, Vancouver, Canada, 2020: 1851.
|
[21] |
PARISOTTO E, SONG H F, RAE J W, et al. Stabilizing transformers for reinforcement learning[C]. The 37th International Conference on Machine Learning, Vienna, Austria, 2020: 694.
|
[22] |
VAN HASSELT H, GUEZ A, and SILVER D. Deep reinforcement learning with double Q-learning[C]. The 30th AAAI Conference on Artificial Intelligence, Phoenix, USA, 2016. doi: 10.1609/aaai.v30i1.10295.
|
[23] |
WANG Ziyu, SCHAUL T, HESSEL M, et al. Dueling network architectures for deep reinforcement learning[C]. The 33rd International Conference on Machine Learning, New York, USA, 2016: 1995–2003.
|
[24] |
CHEN Zhe, HARABOR D, LI Jiaoyang, et al. Traffic flow optimisation for lifelong multi-agent path finding[C]. The 38th AAAI Conference on Artificial Intelligence, Vancouver, Canada, 2024: 20674–20682. doi: 10.1609/aaai.v38i18.30054.
|
[25] |
MAOUDJ A and CHRISTENSEN A L. Improved decentralized cooperative multi-agent path finding for robots with limited communication[J]. Swarm Intelligence, 2024, 18(2): 167–185. doi: 10.1007/s11721-023-00230-7.
|