[1] |
LIU Huan, LI Wei, XIA Xianggen, et al. SegHSI: Semantic segmentation of hyperspectral images with limited labeled pixels[J]. IEEE Transactions on Image Processing, 2024, 33: 6469–6482. doi: 10.1109/TIP.2024.3492724.
|
[2] |
张印辉, 张金凯, 何自芬, 等. 全局感知与稀疏特征关联图像级弱监督病理图像分割[J]. 电子与信息学报, 2024, 46(9): 3672–3682. doi: 10.11999/JEIT240364.
ZHANG Yinhui, ZHANG Jinkai, HE Zifen, et al. Global perception and sparse feature associate image-level weakly supervised pathological image segmentation[J]. Journal of Electronics & Information Technology, 2024, 46(9): 3672–3682. doi: 10.11999/JEIT240364.
|
[3] |
LI Jiale, DAI Hang, HAN Hao, et al. MSeg3D: Multi-modal 3D semantic segmentation for autonomous driving[C]. IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, Canada, 2023: 21694–21704. doi: 10.1109/CVPR52729.2023.02078.
|
[4] |
梁燕, 易春霞, 王光宇, 等. 基于多尺度语义编解码网络的遥感图像语义分割[J]. 电子学报, 2023, 51(11): 3199–3214. doi: 10.12263/DZXB.20220503.
LIANG Yan, YI Chunxia, WANG Guangyu, et al. Semantic segmentation of remote sensing image based on multi-scale semantic encoder-decoder network[J]. Acta Electronica Sinica, 2023, 51(11): 3199–3214. doi: 10.12263/DZXB.20220503.
|
[5] |
OH Y, KIM B, and HAM B. Background-aware pooling and noise-aware loss for weakly-supervised semantic segmentation[C]. IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, USA, 2021: 6909–6918. doi: 10.1109/CVPR46437.2021.00684.
|
[6] |
LIANG Zhiyuan, WANG Tiancai, ZHANG Xiangyu, et al. Tree energy loss: Towards sparsely annotated semantic segmentation[C]. IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, USA, 2022: 16886–16895. doi: 10.1109/CVPR52688.2022.01640.
|
[7] |
ZHAO Yuanhao, SUN Genyun, LING Ziyan, et al. Point-based weakly supervised deep learning for semantic segmentation of remote sensing images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 5638416. doi: 10.1109/TGRS.2024.3409903.
|
[8] |
KWEON H, YOON S H, KIM H, et al. Unlocking the potential of ordinary classifier: Class-specific adversarial erasing framework for weakly supervised semantic segmentation[C]. IEEE/CVF International Conference on Computer Vision, Montreal, Canada, 2021: 6974–6983. doi: 10.1109/ICCV48922.2021.00691.
|
[9] |
ZHOU Bolei, KHOSLA A, LAPEDRIZA A, et al. Learning deep features for discriminative localization[C]. IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 2921–2929. doi: 10.1109/CVPR.2016.319.
|
[10] |
WANG Xiang, YOU Shaodi, LI Xi, et al. Weakly-supervised semantic segmentation by iteratively mining common object features[C]. IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 1354–1362. doi: 10.1109/CVPR.2018.00147.
|
[11] |
WANG Xun, ZHANG Haozhi, HUANG Weilin, et al. Cross-batch memory for embedding learning[C]. IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, USA, 2020: 6387–6396. doi: 10.1109/CVPR42600.2020.00642.
|
[12] |
LEE S, LEE M, LEE J, et al. Railroad is not a train: Saliency as pseudo-pixel supervision for weakly supervised semantic segmentation[C]. IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, USA, 2021: 5491–5501. doi: 10.1109/CVPR46437.2021.00545.
|
[13] |
LEE J, OH S J, YUN S, et al. Weakly supervised semantic segmentation using out-of-distribution data[C]. IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, USA, 2022: 16876–16885. doi: 10.1109/CVPR52688.2022.01639.
|
[14] |
CHANG Yuting, WANG Qiaosong, HUNG W C, et al. Weakly-supervised semantic segmentation via sub-category exploration[C]. IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, USA, 2020: 8988–8997. doi: 10.1109/CVPR42600.2020.00901.
|
[15] |
ARPIT D, JASTRZĘBSKI S, BALLAS N, et al. A closer look at memorization in deep networks[C]. 34th International Conference on Machine Learning, Sydney, Australia, 2017: 233–242.
|
[16] |
CHEN Tao, YAO Yazhou, and TANG Jinhui. Multi-granularity denoising and bidirectional alignment for weakly supervised semantic segmentation[J]. IEEE Transactions on Image Processing, 2023, 32: 2960–2971. doi: 10.1109/TIP.2023.3275913.
|
[17] |
RONG Shenghai, TU Bohai, WANG Zilei, et al. Boundary-enhanced co-training for weakly supervised semantic segmentation[C]. IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, Canada, 2023: 19574–19584. doi: 10.1109/CVPR52729.2023.01875.
|
[18] |
WU Zifeng, SHEN Chunhua, and VAN DEN HENGEL A. Wider or deeper: Revisiting the ResNet model for visual recognition[J]. Pattern Recognition, 2019, 90: 119–133. doi: 10.1016/j.patcog.2019.01.006.
|
[19] |
SRIVASTAVA N, HINTON G, KRIZHEVSKY A, et al. Dropout: A simple way to prevent neural networks from overfitting[J]. The Journal of Machine Learning Research, 2014, 15(1): 1929–1958.
|
[20] |
LI Mingjia, XIE Binhui, LI Shuang, et al. VBLC: Visibility boosting and logit-constraint learning for domain adaptive semantic segmentation under adverse conditions[C]. 37th AAAI Conference on Artificial Intelligence, Washington, USA, 2023: 8605–8613. doi: 10.1609/aaai.v37i7.26036.
|
[21] |
YANG Guoqing, ZHU Chuang, and ZHANG Yu. A self-training framework based on multi-scale attention fusion for weakly supervised semantic segmentation[C]. IEEE International Conference on Multimedia and Expo, Brisbane, Australia, 2023: 876–881. doi: 10.1109/ICME55011.2023.00155.
|
[22] |
KRÄHENBÜHL P and KOLTUN V. Efficient inference in fully connected CRFs with gaussian edge potentials[C]. 25th International Conference on Neural Information Processing Systems, Granada, Spain, 2011: 109–117.
|
[23] |
LEE J, KIM E, LEE S, et al. FickleNet: Weakly and semi-supervised semantic image segmentation using stochastic inference[C]. IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, USA, 2019: 5262–5271. doi: 10.1109/CVPR.2019.00541.
|
[24] |
KIM Y, YIM J, YUN J, et al. NLNL: Negative learning for noisy labels[C]. IEEE/CVF International Conference on Computer Vision, Seoul, Korea (South), 2019: 101–110. doi: 10.1109/ICCV.2019.00019.
|
[25] |
KIM Y, YUN J, SHON H, et al. Joint negative and positive learning for noisy labels[C]. IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, USA, 2021: 9437–9446. doi: 10.1109/CVPR46437.2021.00932.
|
[26] |
EVERINGHAM M, VAN GOOL L, WILLIAMS C K I, et al. The PASCAL visual object classes (VOC) challenge[J]. International Journal of Computer Vision, 2010, 88(2): 303–338. doi: 10.1007/s11263-009-0275-4.
|
[27] |
LIN T Y, MAIRE M, BELONGIE S, et al. Microsoft COCO: Common objects in context[C]. 13th European Conference on Computer Vision, Zurich, Switzerland, 2014: 740–755. doi: 10.1007/978-3-319-10602-1_48.
|
[28] |
HARIHARAN B, ARBELÁEZ P, BOURDEV L, et al. Semantic contours from inverse detectors[C]. International Conference on Computer Vision, Barcelon, Spain, 2011: 991–998. doi: 10.1109/ICCV.2011.6126343.
|
[29] |
SHELHAMER E, LONG J, and DARRELL T. Fully convolutional networks for semantic segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(4): 640–651. doi: 10.1109/TPAMI.2016.2572683.
|
[30] |
DENG Jia, DONG Wei, SOCHER R, et al. ImageNet: A large-scale hierarchical image database[C]. IEEE Conference on Computer Vision and Pattern Recognition, Miami, USA, 2009: 248–255. doi: 10.1109/CVPR.2009.5206848.
|
[31] |
CHEN L C, PAPANDREOU G, KOKKINOS I, et al. Semantic image segmentation with deep convolutional nets and fully connected CRFs[C]. 3rd International Conference on Learning Representations, San Diego, USA, 2015: 24–37.
|
[32] |
CHEN L C, PAPANDREOU G, KOKKINOS I, et al. DeepLab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(4): 834–848. doi: 10.1109/TPAMI.2017.2699184.
|
[33] |
CHEN Zhaozheng, WANG Tan, WU Xiongwei, et al. Class re-activation maps for weakly-supervised semantic segmentation[C]. IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, USA, 2022: 959–968. doi: 10.1109/CVPR52688.2022.00104.
|
[34] |
ZHOU Tianfei, ZHANG Meijie, ZHAO Fang, et al. Regional semantic contrast and aggregation for weakly supervised semantic segmentation[C]. IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, USA, 2022: 4289–4299. doi: 10.1109/CVPR52688.2022.00426.
|
[35] |
XIE Enze, WANG Wenhai, YU Zhiding, et al. SegFormer: Simple and efficient design for semantic segmentation with transformers[C]. 35th International Conference on Neural Information Processing Systems, 2021: 924. (查阅网上资料, 未找到本条文献出版地信息, 请确认并补充).
|
[36] |
LIU Ze, LIN Yutong, CAO Yue, et al. Swin transformer: Hierarchical vision transformer using shifted windows[C]. IEEE/CVF International Conference on Computer Vision, Montreal, Canada, 2021: 9992–10002. doi: 10.1109/ICCV48922.2021.00986.
|
[37] |
CHENG Bowen, MISRA I, SCHWING A G, et al. Masked-attention mask transformer for universal image segmentation[C]. IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, USA, 2022: 1280–1289. doi: 10.1109/CVPR52688.2022.00135.
|
[38] |
HAN W, KANG S, CHOO K, et al. Complementary branch fusing class and semantic knowledge for robust weakly supervised semantic segmentation[J]. Pattern Recognition, 2025, 157: 110922. doi: 10.1016/j.patcog.2024.110922.
|
[39] |
CHEN Qi, YANG Lingxiao, LAI Jianhuang, et al. Self-supervised image-specific prototype exploration for weakly supervised semantic segmentation[C]. IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, USA, 2022: 4278–4288. doi: 10.1109/CVPR52688.2022.00425.
|
[40] |
CHEN Liyi, LEI Chenyang, LI Ruihuang, et al. FPR: False positive rectification for weakly supervised semantic segmentation[C]. IEEE/CVF International Conference on Computer Vision, Paris, France, 2023: 1108–1118. doi: 10.1109/ICCV51070.2023.00108.
|
[41] |
CHEN L C, ZHU Yukun, PAPANDREOU G, et al. Encoder-decoder with atrous separable convolution for semantic image segmentation[C]. 15th European Conference on Computer Vision, Munich, Germany, 2018: 833–851. doi: 10.1007/978-3-030-01234-2_49.
|
[42] |
LIU Sheng, LIU Kangning, ZHU Weicheng, et al. Adaptive early-learning correction for segmentation from noisy annotations[C]. IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, USA, 2022: 2596–2606. doi: 10.1109/CVPR52688.2022.00263.
|
[43] |
LEE M, LEE S, LEE J, et al. Saliency as pseudo-pixel supervision for weakly and semi-supervised semantic segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(10): 12341–12357. doi: 10.1109/TPAMI.2023.3273592.
|
[44] |
LI Yi, DUAN Yiqun, KUANG Zhanghui, et al. Uncertainty estimation via response scaling for pseudo-mask noise mitigation in weakly-supervised semantic segmentation[C]. 36th AAAI Conference on Artificial Intelligence, Palo Alto, 2022: 1447–1455. doi: 10.1609/aaai.v36i2.20034. (查阅网上资料,未找到本条文献出版地信息,请确认).
|
[45] |
WU Yuanchen, LI Xiaoqiang, LI Jide, et al. DINO is also a semantic guider: Exploiting class-aware affinity for weakly supervised semantic segmentation[C]. 32nd ACM International Conference on Multimedia, Melbourne, Australia, 2024: 1389–1397. doi: 10.1145/3664647.3681710.
|
[46] |
XU Rongtao, WANG Changwei, SUN Jiaxi, et al. Self correspondence distillation for end-to-end weakly-supervised semantic segmentation[C]. 37th AAAI Conference on Artificial Intelligence, Washington, USA, 2023: 3045–3053. doi: 10.1609/aaai.v37i3.25408.
|