Advanced Search
Turn off MathJax
Article Contents

doi: 10.11999/JEIT250112 cstr: 32379.14.JEIT250112
Funds:  National Natural Science Foundation of China (62372077, 62302249), China Postdoctoral Science Foundation (2022M720624), Research Fund of Liaoning Provincial Education Department (LJKQZ2021152), National Key Research and Development Program of China (2019YFB2102400), University Talent Introduction Foundation(18-1021)
  • Received Date: 2025-02-26
  • Rev Recd Date: 2025-08-20
  • Available Online: 2025-08-27
  • loading
  • [1]
    LIU Huan, LI Wei, XIA Xianggen, et al. SegHSI: Semantic segmentation of hyperspectral images with limited labeled pixels[J]. IEEE Transactions on Image Processing, 2024, 33: 6469–6482. doi: 10.1109/TIP.2024.3492724.
    [2]
    张印辉, 张金凯, 何自芬, 等. 全局感知与稀疏特征关联图像级弱监督病理图像分割[J]. 电子与信息学报, 2024, 46(9): 3672–3682. doi: 10.11999/JEIT240364.

    ZHANG Yinhui, ZHANG Jinkai, HE Zifen, et al. Global perception and sparse feature associate image-level weakly supervised pathological image segmentation[J]. Journal of Electronics & Information Technology, 2024, 46(9): 3672–3682. doi: 10.11999/JEIT240364.
    [3]
    LI Jiale, DAI Hang, HAN Hao, et al. MSeg3D: Multi-modal 3D semantic segmentation for autonomous driving[C]. IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, Canada, 2023: 21694–21704. doi: 10.1109/CVPR52729.2023.02078.
    [4]
    梁燕, 易春霞, 王光宇, 等. 基于多尺度语义编解码网络的遥感图像语义分割[J]. 电子学报, 2023, 51(11): 3199–3214. doi: 10.12263/DZXB.20220503.

    LIANG Yan, YI Chunxia, WANG Guangyu, et al. Semantic segmentation of remote sensing image based on multi-scale semantic encoder-decoder network[J]. Acta Electronica Sinica, 2023, 51(11): 3199–3214. doi: 10.12263/DZXB.20220503.
    [5]
    OH Y, KIM B, and HAM B. Background-aware pooling and noise-aware loss for weakly-supervised semantic segmentation[C]. IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, USA, 2021: 6909–6918. doi: 10.1109/CVPR46437.2021.00684.
    [6]
    LIANG Zhiyuan, WANG Tiancai, ZHANG Xiangyu, et al. Tree energy loss: Towards sparsely annotated semantic segmentation[C]. IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, USA, 2022: 16886–16895. doi: 10.1109/CVPR52688.2022.01640.
    [7]
    ZHAO Yuanhao, SUN Genyun, LING Ziyan, et al. Point-based weakly supervised deep learning for semantic segmentation of remote sensing images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 5638416. doi: 10.1109/TGRS.2024.3409903.
    [8]
    KWEON H, YOON S H, KIM H, et al. Unlocking the potential of ordinary classifier: Class-specific adversarial erasing framework for weakly supervised semantic segmentation[C]. IEEE/CVF International Conference on Computer Vision, Montreal, Canada, 2021: 6974–6983. doi: 10.1109/ICCV48922.2021.00691.
    [9]
    ZHOU Bolei, KHOSLA A, LAPEDRIZA A, et al. Learning deep features for discriminative localization[C]. IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 2921–2929. doi: 10.1109/CVPR.2016.319.
    [10]
    WANG Xiang, YOU Shaodi, LI Xi, et al. Weakly-supervised semantic segmentation by iteratively mining common object features[C]. IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 1354–1362. doi: 10.1109/CVPR.2018.00147.
    [11]
    WANG Xun, ZHANG Haozhi, HUANG Weilin, et al. Cross-batch memory for embedding learning[C]. IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, USA, 2020: 6387–6396. doi: 10.1109/CVPR42600.2020.00642.
    [12]
    LEE S, LEE M, LEE J, et al. Railroad is not a train: Saliency as pseudo-pixel supervision for weakly supervised semantic segmentation[C]. IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, USA, 2021: 5491–5501. doi: 10.1109/CVPR46437.2021.00545.
    [13]
    LEE J, OH S J, YUN S, et al. Weakly supervised semantic segmentation using out-of-distribution data[C]. IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, USA, 2022: 16876–16885. doi: 10.1109/CVPR52688.2022.01639.
    [14]
    CHANG Yuting, WANG Qiaosong, HUNG W C, et al. Weakly-supervised semantic segmentation via sub-category exploration[C]. IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, USA, 2020: 8988–8997. doi: 10.1109/CVPR42600.2020.00901.
    [15]
    ARPIT D, JASTRZĘBSKI S, BALLAS N, et al. A closer look at memorization in deep networks[C]. 34th International Conference on Machine Learning, Sydney, Australia, 2017: 233–242.
    [16]
    CHEN Tao, YAO Yazhou, and TANG Jinhui. Multi-granularity denoising and bidirectional alignment for weakly supervised semantic segmentation[J]. IEEE Transactions on Image Processing, 2023, 32: 2960–2971. doi: 10.1109/TIP.2023.3275913.
    [17]
    RONG Shenghai, TU Bohai, WANG Zilei, et al. Boundary-enhanced co-training for weakly supervised semantic segmentation[C]. IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, Canada, 2023: 19574–19584. doi: 10.1109/CVPR52729.2023.01875.
    [18]
    WU Zifeng, SHEN Chunhua, and VAN DEN HENGEL A. Wider or deeper: Revisiting the ResNet model for visual recognition[J]. Pattern Recognition, 2019, 90: 119–133. doi: 10.1016/j.patcog.2019.01.006.
    [19]
    SRIVASTAVA N, HINTON G, KRIZHEVSKY A, et al. Dropout: A simple way to prevent neural networks from overfitting[J]. The Journal of Machine Learning Research, 2014, 15(1): 1929–1958.
    [20]
    LI Mingjia, XIE Binhui, LI Shuang, et al. VBLC: Visibility boosting and logit-constraint learning for domain adaptive semantic segmentation under adverse conditions[C]. 37th AAAI Conference on Artificial Intelligence, Washington, USA, 2023: 8605–8613. doi: 10.1609/aaai.v37i7.26036.
    [21]
    YANG Guoqing, ZHU Chuang, and ZHANG Yu. A self-training framework based on multi-scale attention fusion for weakly supervised semantic segmentation[C]. IEEE International Conference on Multimedia and Expo, Brisbane, Australia, 2023: 876–881. doi: 10.1109/ICME55011.2023.00155.
    [22]
    KRÄHENBÜHL P and KOLTUN V. Efficient inference in fully connected CRFs with gaussian edge potentials[C]. 25th International Conference on Neural Information Processing Systems, Granada, Spain, 2011: 109–117.
    [23]
    LEE J, KIM E, LEE S, et al. FickleNet: Weakly and semi-supervised semantic image segmentation using stochastic inference[C]. IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, USA, 2019: 5262–5271. doi: 10.1109/CVPR.2019.00541.
    [24]
    KIM Y, YIM J, YUN J, et al. NLNL: Negative learning for noisy labels[C]. IEEE/CVF International Conference on Computer Vision, Seoul, Korea (South), 2019: 101–110. doi: 10.1109/ICCV.2019.00019.
    [25]
    KIM Y, YUN J, SHON H, et al. Joint negative and positive learning for noisy labels[C]. IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, USA, 2021: 9437–9446. doi: 10.1109/CVPR46437.2021.00932.
    [26]
    EVERINGHAM M, VAN GOOL L, WILLIAMS C K I, et al. The PASCAL visual object classes (VOC) challenge[J]. International Journal of Computer Vision, 2010, 88(2): 303–338. doi: 10.1007/s11263-009-0275-4.
    [27]
    LIN T Y, MAIRE M, BELONGIE S, et al. Microsoft COCO: Common objects in context[C]. 13th European Conference on Computer Vision, Zurich, Switzerland, 2014: 740–755. doi: 10.1007/978-3-319-10602-1_48.
    [28]
    HARIHARAN B, ARBELÁEZ P, BOURDEV L, et al. Semantic contours from inverse detectors[C]. International Conference on Computer Vision, Barcelon, Spain, 2011: 991–998. doi: 10.1109/ICCV.2011.6126343.
    [29]
    SHELHAMER E, LONG J, and DARRELL T. Fully convolutional networks for semantic segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(4): 640–651. doi: 10.1109/TPAMI.2016.2572683.
    [30]
    DENG Jia, DONG Wei, SOCHER R, et al. ImageNet: A large-scale hierarchical image database[C]. IEEE Conference on Computer Vision and Pattern Recognition, Miami, USA, 2009: 248–255. doi: 10.1109/CVPR.2009.5206848.
    [31]
    CHEN L C, PAPANDREOU G, KOKKINOS I, et al. Semantic image segmentation with deep convolutional nets and fully connected CRFs[C]. 3rd International Conference on Learning Representations, San Diego, USA, 2015: 24–37.
    [32]
    CHEN L C, PAPANDREOU G, KOKKINOS I, et al. DeepLab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(4): 834–848. doi: 10.1109/TPAMI.2017.2699184.
    [33]
    CHEN Zhaozheng, WANG Tan, WU Xiongwei, et al. Class re-activation maps for weakly-supervised semantic segmentation[C]. IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, USA, 2022: 959–968. doi: 10.1109/CVPR52688.2022.00104.
    [34]
    ZHOU Tianfei, ZHANG Meijie, ZHAO Fang, et al. Regional semantic contrast and aggregation for weakly supervised semantic segmentation[C]. IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, USA, 2022: 4289–4299. doi: 10.1109/CVPR52688.2022.00426.
    [35]
    XIE Enze, WANG Wenhai, YU Zhiding, et al. SegFormer: Simple and efficient design for semantic segmentation with transformers[C]. 35th International Conference on Neural Information Processing Systems, 2021: 924. (查阅网上资料, 未找到本条文献出版地信息, 请确认并补充).
    [36]
    LIU Ze, LIN Yutong, CAO Yue, et al. Swin transformer: Hierarchical vision transformer using shifted windows[C]. IEEE/CVF International Conference on Computer Vision, Montreal, Canada, 2021: 9992–10002. doi: 10.1109/ICCV48922.2021.00986.
    [37]
    CHENG Bowen, MISRA I, SCHWING A G, et al. Masked-attention mask transformer for universal image segmentation[C]. IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, USA, 2022: 1280–1289. doi: 10.1109/CVPR52688.2022.00135.
    [38]
    HAN W, KANG S, CHOO K, et al. Complementary branch fusing class and semantic knowledge for robust weakly supervised semantic segmentation[J]. Pattern Recognition, 2025, 157: 110922. doi: 10.1016/j.patcog.2024.110922.
    [39]
    CHEN Qi, YANG Lingxiao, LAI Jianhuang, et al. Self-supervised image-specific prototype exploration for weakly supervised semantic segmentation[C]. IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, USA, 2022: 4278–4288. doi: 10.1109/CVPR52688.2022.00425.
    [40]
    CHEN Liyi, LEI Chenyang, LI Ruihuang, et al. FPR: False positive rectification for weakly supervised semantic segmentation[C]. IEEE/CVF International Conference on Computer Vision, Paris, France, 2023: 1108–1118. doi: 10.1109/ICCV51070.2023.00108.
    [41]
    CHEN L C, ZHU Yukun, PAPANDREOU G, et al. Encoder-decoder with atrous separable convolution for semantic image segmentation[C]. 15th European Conference on Computer Vision, Munich, Germany, 2018: 833–851. doi: 10.1007/978-3-030-01234-2_49.
    [42]
    LIU Sheng, LIU Kangning, ZHU Weicheng, et al. Adaptive early-learning correction for segmentation from noisy annotations[C]. IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, USA, 2022: 2596–2606. doi: 10.1109/CVPR52688.2022.00263.
    [43]
    LEE M, LEE S, LEE J, et al. Saliency as pseudo-pixel supervision for weakly and semi-supervised semantic segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(10): 12341–12357. doi: 10.1109/TPAMI.2023.3273592.
    [44]
    LI Yi, DUAN Yiqun, KUANG Zhanghui, et al. Uncertainty estimation via response scaling for pseudo-mask noise mitigation in weakly-supervised semantic segmentation[C]. 36th AAAI Conference on Artificial Intelligence, Palo Alto, 2022: 1447–1455. doi: 10.1609/aaai.v36i2.20034. (查阅网上资料,未找到本条文献出版地信息,请确认).
    [45]
    WU Yuanchen, LI Xiaoqiang, LI Jide, et al. DINO is also a semantic guider: Exploiting class-aware affinity for weakly supervised semantic segmentation[C]. 32nd ACM International Conference on Multimedia, Melbourne, Australia, 2024: 1389–1397. doi: 10.1145/3664647.3681710.
    [46]
    XU Rongtao, WANG Changwei, SUN Jiaxi, et al. Self correspondence distillation for end-to-end weakly-supervised semantic segmentation[C]. 37th AAAI Conference on Artificial Intelligence, Washington, USA, 2023: 3045–3053. doi: 10.1609/aaai.v37i3.25408.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(11)

    Article Metrics

    Article views (65) PDF downloads(6) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return