Citation: | ZHOU Liming, YU Xi, FAN Minghu, ZUO Xianyu, QIAO Baojun. Multi-objective Remote Sensing Product Production Task Scheduling Algorithm Based on Double Deep Q-Network[J]. Journal of Electronics & Information Technology, 2025, 47(8): 2819-2829. doi: 10.11999/JEIT250089 |
[1] |
AHMAD R. Smart remote sensing network for disaster management: An overview[J]. Telecommunication Systems, 2024, 87(1): 213–237. doi: 10.1007/s11235-024-01148-z.
|
[2] |
孙伟伟, 苏奋振, 侯西勇, 等. 遥感助力海岸带可持续发展—首届全国海岸带遥感大会总结[J]. 遥感学报, 2024, 28(4): 1123–1128. doi: 10.11834/jrs.20243538.
SUN Weiwei, SUN Fenzhen, HOU Xiyong, et al. Remote sensing for sustainable development of coastal Zones-Summary of the first national conference on remote sensing of coastal zones[J]. National Remote Sensing Bulletin, 2024, 28(4): 1123–1128. doi: 10.11834/jrs.20243538.
|
[3] |
XING Xiaoyue, YU Bailang, KANG Chaogui, et al. The synergy between remote sensing and social sensing in urban studies: Review and perspectives[J]. IEEE Geoscience and Remote Sensing Magazine, 2024, 12(1): 108–137. doi: 10.1109/MGRS.2023.3343968.
|
[4] |
WANG Fumin, LI Jiale, PENG Dailiang, et al. Estimating soybean yields using causal inference and deep learning approaches with satellite remote sensing data[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2024, 17: 14161–14178. doi: 10.1109/JSTARS.2024.3435699.
|
[5] |
GROSOF I, YANG Kunhe, SCULLY Z, et al. Nudge: Stochastically improving upon FCFS[C]. 2021 ACM SIGMETRICS/International Conference on Measurement and Modeling of Computer Systems, 2021: 11–12. doi: 10.1145/3410220.3460102.
|
[6] |
PACHIPALA Y, SUREDDY K S, SRIYA KAITEPALLI A B S, et al. Optimizing task scheduling in cloud computing: An enhanced shortest job first algorithm[J]. Procedia Computer Science, 2024, 233: 604–613. doi: 10.1016/j.procs.2024.03.250.
|
[7] |
BUSENHART C, HUNGERBÜHLER N, and XU W. A Variant of the round-robin scheduling problem[J]. Ars Combinatoria, 2024, 158: 81–92. doi: 10.61091/ars158-09.
|
[8] |
GAWIEJNOWICZ S, LIN B M T, and MOSHEIOV G. Dynamic scheduling problems in theory and practice[J]. Journal of Scheduling, 2024, 27(3): 225–226. doi: 10.1007/s10951-023-00798-2.
|
[9] |
ABO-ALSABEH R and SALHI A. The genetic algorithm: A study survey[J] Iraqi Journal of Science, 2022, 63(3): 1215–1231. doi: 10.24996/ijs.2022.63.3.27.
|
[10] |
陈亮, 李景山. 遥感卫星数据预处理系统复杂任务调度模型研究与实现[J]. 遥感信息, 2021, 36(5): 98–106. doi: 10.3969/j.issn.1000-3177.2021.05.014.
CHEN Liang and LI Jingshan. Research and implementation of complex task scheduling model for remote sensing satellite data preprocessing system[J]. Remote Sensing Information, 2021, 36(5): 98–106. doi: 10.3969/j.issn.1000-3177.2021.05.014.
|
[11] |
赵斐, 陈昊, 白建东, 等. 基于改进蚁群算法的遥感信息处理负载均衡任务调度算法研究[J]. 计算机测量与控制, 2021, 29(11): 183–188. doi: 10.16526/j.cnki.11-4762/tp.2021.11.033.
ZHAO Fei, CHEN Hao, BAI Jiandong, et al. One remote sensing information processing task allocation algorithm for collaborative planning based on knowledge model and genetic algorithm[J]. Computer Measurement & Control, 2021, 29(11): 183–188. doi: 10.16526/j.cnki.11-4762/tp.2021.11.033.
|
[12] |
ZHANG Jianxiong, GUO Bing, DING Xuefeng, et al. An adaptive multi-objective multi-task scheduling method by hierarchical deep reinforcement learning[J]. Applied Soft Computing, 2024, 154: 111342. doi: 10.1016/j.asoc.2024.111342.
|
[13] |
LI Guohao, LI Xuefei, LI Jing, et al. PTMB: An online satellite task scheduling framework based on pre-trained Markov decision process for multi-task scenario[J]. Knowledge-Based Systems, 2024, 284: 111339. doi: 10.1016/j.knosys.2023.111339.
|
[14] |
HAN Xuefeng, HE Hongwen, WU Jingda, et al. Energy management based on reinforcement learning with double deep Q-learning for a hybrid electric tracked vehicle[J]. Applied Energy, 2019, 254: 113708. doi: 10.1016/j.apenergy.2019.113708.
|
[15] |
李奇儒, 耿霞. 基于改进DQN算法的机器人路径规划[J]. 计算机工程, 2023, 49(12): 111–120. doi: 10.19678/j.issn.1000-3428.0066348.
LI Qiru and GENG Xia. Robot path planning based on improved DQN algorithm[J]. Computer Engineering, 2023, 49(12): 111–120. doi: 10.19678/j.issn.1000-3428.0066348.
|
[16] |
WANG Xinwei, WU Guohua, XING Lining, et al. Agile earth observation satellite scheduling over 20 years: Formulations, methods, and future directions[J]. IEEE Systems Journal, 2021, 15(3): 3881–3892. doi: 10.1109/JSYST.2020.2997050.
|
[17] |
胡庆雷, 邵小东, 杨昊旸, 等. 航天器多约束姿态规划与控制: 进展与展望[J]. 航空学报, 2022, 43(10): 527351. doi: 10.7527/S1000-6893.2022.27351.
HU Qinglei, SHAO Xiaodong, YANG Haoyang, et al. Spacecraft attitude planning and control under multiple constraints: Review and prospects[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(10): 527351. doi: 10.7527/S1000-6893.2022.27351.
|
[18] |
何奇恩, 李峰, 钟兴. 多目标算法在卫星区域覆盖调度及数传规划上的应用综述[J]. 遥感技术与应用, 2023, 38(4): 783–793. doi: 10.11873/j.issn.1004-0323.2023.4.0783.
HE Qien, LI Feng, and ZHONG Xing. A review of the application of multi-objective algorithms in satellite regional coverage scheduling and data transmission planning[J]. Remote Sensing Technology and Application, 2023, 38(4): 783–793. doi: 10.11873/j.issn.1004-0323.2023.4.0783.
|
[19] |
DROZDOWSKI M. Scheduling multiprocessor tasks—An overview[J]. European Journal of Operational Research, 1996, 94(2): 215–230. doi: 10.1016/0377-2217(96)00123-3.
|
[20] |
杨戈, 赵鑫, 黄静. 云环境下调度算法综述[J]. 电子技术应用, 2019, 45(9): 13–17,27. doi: 10.16157/j.issn.0258-7998.190547.
YANG Ge, ZHAO Xin, and HUANG Jing. Overview of task scheduling algorithms in cloud computing[J]. Application of Electronic Technique, 2019, 45(9): 13–17,27. doi: 10.16157/j.issn.0258-7998.190547.
|
[21] |
ELZEKI O M, RASHAD M Z, and ELSOUD M A. Overview of scheduling tasks in distributed computing systems[J]. International Journal of Soft Computing and Engineering (IJSCE), 2012, 2(3): 470–475.
|
[22] |
KUCHUK H, MOZHAIEV O, KUCHUK N, et al. Devising a method for the virtual clustering of the internet of things edge environment[J]. Eastern-European Journal of Enterprise Technologies, 2024, 1(9): 60–71. doi: 10.15587/1729-4061.2024.298431.
|
[23] |
WANG Jin. Virtual cluster model based on big data application[M]. LI Xiaolong. Advances in Intelligent Automation and Soft Computing. Cham: Springer, 2022: 61–66. doi: 10.1007/978-3-030-81007-8_8.
|
[24] |
AGHAEI M, ASGHARI P, ADABI S, et al. Using recommender clustering to improve quality of services with sustainable virtual machines in cloud computing[J]. Cluster Computing, 2023, 26(2): 1479–1493. doi: 10.1007/s10586-022-03760-7.
|
[25] |
GHASEMI A and KESHAVARZI A. Energy-efficient virtual machine placement in heterogeneous cloud data centers: A clustering-enhanced multi-objective, multi-reward reinforcement learning approach[J]. Cluster Computing, 2024, 27(10): 14149–14166. doi: 10.1007/s10586-024-04657-3.
|
[26] |
HAN Xiaoyun, MU Chaoxu, ZHU Jiebei, et al. A safe virtual machine scheduling strategy for energy conservation and privacy protection of server clusters in cloud data centers[J]. IEEE Transactions on Sustainable Computing, 2024, 9(1): 46–60. doi: 10.1109/TSUSC.2023.3303637.
|
[27] |
ZHU Xi, ZHANG Lei, and TANG Shaoqiang. Adaptive selection of reference stiffness in virtual clustering analysis[J]. Computer Methods in Applied Mechanics and Engineering, 2021, 376: 113621. doi: 10.1016/j.cma.2020.113621.
|
[28] |
CHRAIBI A, BEN ALLA S, TOUHAFI A, et al. A novel dynamic multi-objective task scheduling optimization based on Dueling DQN and PER[J]. The Journal of Supercomputing, 2023, 79(18): 21368–21423. doi: 10.1007/s11227-023-05489-5.
|
[29] |
MNIH V, KAVUKCUOGLU K, SILVER D, et al. Human-level control through deep reinforcement learning[J]. Nature, 2015, 518(7540): 529–533. doi: 10.1038/nature14236.
|
[30] |
KOBAYASHI T and ILBOUDO W E L. t-soft update of target network for deep reinforcement learning[J]. Neural Networks, 2021, 136: 63–71. doi: 10.1016/j.neunet.2020.12.023.
|
[31] |
HUANG Heqing, CHIU H C, SHI Qingkai et al. Balance seed scheduling via Monte Carlo planning[J]. IEEE Transactions on Dependable and Secure Computing, 2024, 21(3): 1469–1483. doi: 10.1109/TDSC.2023.3285293.
|