Citation: | HOU Changbo, FU Dingyi, SONG Zhen, WANG Bin, ZHOU Zhichao. Graph-structured Data-driven Topology Inference for Non-cooperative Clustered Wireless Communication Networks[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250084 |
[1] |
AL AJRAWI S and TRAN B. Mobile wireless ad-hoc network routing protocols comparison for real-time military application[J]. Spatial Information Research, 2024, 32(1): 119–129. doi: 10.1007/s41324-023-00535-z.
|
[2] |
GOMES J E C, EHLERT R R, BOESCHE R M, et al. Surveying emerging network approaches for military command and control systems[J]. ACM Computing Surveys, 2024, 56(6): 143. doi: 10.1145/3626090.
|
[3] |
AHMAD R B, KOLAWOLE S F, and CHINEDU P U. Design of multimedia mobile ad-hoc network for military applications: A review[J]. ATBU Journal of Science, Technology and Education, 2023, 11(4): 517–524.
|
[4] |
MOHAMMED B A, AL-SHAREEDA M A, ALSADHAN A A, et al. Service based VEINS framework for vehicular Ad-hoc network (VANET): A systematic review of state-of-the-art[J]. Peer-to-Peer Networking and Applications, 2024, 17(4): 2259–2281. doi: 10.1007/s12083-024-01692-0.
|
[5] |
ALMANSOR M J, DIN N M, BAHARUDDIN M Z, et al. Routing protocols strategies for flying Ad-Hoc network (FANET): Review, taxonomy, and open research issues[J]. Alexandria Engineering Journal, 2024, 109: 553–577. doi: 10.1016/j.aej.2024.09.032.
|
[6] |
宋叶辉, 丁国如, 徐承龙, 等. 面向非合作无人机通信网络的通联拓扑推理技术[J]. 电子与信息学报, 2022, 44(3): 924–939. doi: 10.11999/JEIT211410.
SONG Yehui, DING Guoru, XU Chenglong, et al. Communication topology inference technology for non-cooperative UAV communication network[J]. Journal of Electronics & Information Technology, 2022, 44(3): 924–939. doi: 10.11999/JEIT211410.
|
[7] |
刘子彤, 丁国如, 王威, 等. 面向非合作无线网络的拓扑感知技术分析[J]. 指挥与控制学报, 2021, 7(2): 153–159. doi: 10.3969/j.issn.2096-0204.2021.02.0153.
LIU Zitong, DING Guoru, WANG Wei, et al. Analysis of topology sensing technology for non-collaborative wireless networks[J]. Journal of Command and Control, 2021, 7(2): 153–159. doi: 10.3969/j.issn.2096-0204.2021.02.0153.
|
[8] |
RÉAU M, RENAUD N, XUE L C, et al. DeepRank-GNN: A graph neural network framework to learn patterns in protein–protein interfaces[J]. Bioinformatics, 2023, 39(1): btac759. doi: 10.1093/bioinformatics/btac759.
|
[9] |
JIANG Weiwei, LUO Jiayun, HE Miao, et al. Graph neural network for traffic forecasting: The research progress[J]. ISPRS International Journal of Geo-Information, 2023, 12(3): 100. doi: 10.3390/ijgi12030100.
|
[10] |
LI Xiao, SUN Li, LING Mengjie, et al. A survey of graph neural network based recommendation in social networks[J]. Neurocomputing, 2023, 549: 126441. doi: 10.1016/j.neucom.2023.126441.
|
[11] |
ZHOU Jie, CUI Ganqu, HU Shengding, et al. Graph neural networks: A review of methods and applications[J]. AI Open, 2020, 1: 57–81. doi: 10.1016/j.aiopen.2021.01.001.
|
[12] |
LIU Zitong, WANG Wei, DING Guoru, et al. Topology sensing of non-collaborative wireless networks with conditional Granger causality[J]. IEEE Transactions on Network Science and Engineering, 2022, 9(3): 1501–1515. doi: 10.1109/TNSE.2022.3146465.
|
[13] |
LIU Zitong, SUN Jiachen, SHEN Feng, et al. Topology sensing of wireless networks based on Hawkes process[J]. Mobile Networks and Applications, 2020, 25(6): 2459–2470. doi: 10.1007/s11036-020-01588-2.
|
[14] |
SHARMA P, BUCCI D J, BRAHMA S K, et al. Communication network topology inference via transfer entropy[J]. IEEE Transactions on Network Science and Engineering, 2020, 7(1): 562–575. doi: 10.1109/TNSE.2018.2889454.
|
[15] |
TILGHMAN P and ROSENBLUTH D. Inferring wireless communications links and network topology from externals using Granger causality[C]. Proceedings of the IEEE Military Communications Conference, San Diego, USA, 2013: 1284–1289. doi: 10.1109/MILCOM.2013.219.
|
[16] |
MOORE M G and DAVENPORT M A. Analysis of wireless networks using Hawkes processes[C]. Proceedings of the 17th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), Edinburgh, UK, 2016: 1–5. doi: 10.1109/SPAWC.2016.7536795.
|
[17] |
MOORE M G and DAVENPORT M A. A Hawkes’ eye view of network information flow[C]. Proceedings of 2016 IEEE Statistical Signal Processing Workshop, Palma de Mallorca, Spain, 2016: 1–5. doi: 10.1109/SSP.2016.7551779.
|
[18] |
LAGHATE M and CABRIC D. Learning wireless networks’ topologies using asymmetric Granger causality[J]. IEEE Journal of Selected Topics in Signal Processing, 2018, 12(1): 233–247. doi: 10.1109/JSTSP.2017.2787478.
|
[19] |
LIU Zitong, DING Guoru, WANG Zheng, et al. Cooperative topology sensing of wireless networks with distributed sensors[J]. IEEE Transactions on Cognitive Communications and Networking, 2021, 7(2): 524–540. doi: 10.1109/TCCN.2020.3019601.
|
[20] |
SONG Yehui, DING Guoru, SUN Jiachen, et al. Topology tracking of dynamic UAV wireless networks[J]. Chinese Journal of Aeronautics, 2022, 35(11): 322–335. doi: 10.1016/j.cja.2021.08.012.
|
[21] |
HE Dejun, WU Xinrong, YU Lu, et al. Recognition of non-cooperative radio communication relationships based on transformer[C]. Proceedings of the 8th International Conference on Communication and Information Processing, Beijing, China, 2022: 175–183. doi: 10.1145/3571662.3571688.
|
[22] |
LI Pengxue, ZHA Haoran, and LIN Yun. Topology inference for low-resource non-cooperative cluster networks based on deep learning[C]. 2023 International Conference on Ubiquitous Communication (Ucom), Xi'an, China, 2023: 361–366. doi: 10.1109/Ucom59132.2023.10257608.
|
[23] |
KOIZUMI T, WASA Y, and KISHIDA M. Information transfer-based topology identification of dynamic multi-agent systems[J]. IFAC-PapersOnLine, 2023, 56(2): 3948–3953. doi: 10.1016/j.ifacol.2023.10.1333.
|
[24] |
CHANG Liang, ZHANG Ying, and ZHANG Qi. Dynamic topology identification of wireless communication networks based on Hawkes process[C]. Proceedings of the 2023 4th International Conference on Computing, Networks and Internet of Things, Xiamen, China, 2023: 693–700. doi: 10.1145/3603781.3603903.
|
[25] |
SUN Rui. AITA: Accurate network topology recognition via active interception and topology analysis[C]. 2024 IEEE 4th International Conference on Electronic Technology, Communication and Information (ICETCI), Changchun, China, 2024: 6–10. doi: 10.1109/ICETCI61221.2024.10594668.
|
[26] |
GAO Haoyang, LI Ning, and XIE Yuancheng. Hidden-SAGE: For the inference of complex autonomous system business relationships involving hidden links[J]. Electronics, 2024, 13(9): 1617. doi: 10.3390/electronics13091617.
|
[27] |
GUAN Faqian, ZHU Tianqing, TONG Hanjin, et al. Topology modification against membership inference attack in Graph Neural Networks[J]. Knowledge-Based Systems, 2024, 305: 112642. doi: 10.1016/j.knosys.2024.112642.
|
[28] |
ZHENG Tongya, WANG Xinchao, FENG Zunlei, et al. Temporal aggregation and propagation graph neural networks for dynamic representation[J]. IEEE Transactions on Knowledge and Data Engineering, 2023, 35(10): 10151–10165. doi: 10.1109/TKDE.2023.3265271.
|
[29] |
ANSARI S, ALATRANY A S, ALNAJJAR K A, et al. A survey of artificial intelligence approaches in blind source separation[J]. Neurocomputing, 2023, 561: 126895. doi: 10.1016/j.neucom.2023.126895.
|
[30] |
XIE Lingnan, PENG Linning, ZHANG Junqing, et al. Radio frequency fingerprint identification for Internet of Things: A survey[J]. Security and Safety, 2024, 3: 2023022. doi: 10.1051/sands/2023022.
|
[31] |
RUNGE J, NOWACK P, KRETSCHMER M, et al. Detecting and quantifying causal associations in large nonlinear time series datasets[J]. Science Advances, 2019, 5(11): eaau4996. doi: 10.1126/sciadv.aau4996.
|
[32] |
HAWKES A G. Spectra of some self-exciting and mutually exciting point processes[J]. Biometrika, 1971, 58(1): 83–90. doi: 10.1093/biomet/58.1.83.
|