Citation: | LI Xuehua, LIAO Hailong, ZHANG Xian, ZHOU Jiaen. Federated Deep Reinforcement Learning-based Intelligent Routing Design for LEO Satellite Networks[J]. Journal of Electronics & Information Technology, 2025, 47(8): 2652-2664. doi: 10.11999/JEIT250072 |
[1] |
SUN Yaohua, PENG Mugen, ZHANG Shijie, et al. Integrated satellite-terrestrial networks: Architectures, key techniques, and experimental progress[J]. IEEE Network, 2022, 36(6): 191–198. doi: 10.1109/MNET.106.2100622.
|
[2] |
孙耀华, 彭木根. 面向手机直连的低轨卫星通信: 关键技术、发展现状与未来展望[J]. 电信科学, 2023, 39(2): 25–36. doi: 10.11959/j.issn.1000–0801.2023031.
SUN Yaohua and PENG Mugen. Low earth orbit satellite communication supporting direct connection with mobile phones: Key technologies, recent progress and future directions[J]. Telecommunications Science, 2023, 39(2): 25–36. doi: 10.11959/j.issn.1000–0801.2023031.
|
[3] |
ZHU Xiangming and JIANG Chunxiao. Integrated satellite-terrestrial networks toward 6G: Architectures, applications, and challenges[J]. IEEE Internet of Things Journal, 2022, 9(1): 437–461. doi: 10.1109/JIOT.2021.3126825.
|
[4] |
WANG Cheng, WANG Huawen, and WANG Weidong. A two-hops state-aware routing strategy based on deep reinforcement learning for LEO satellite networks[J]. Electronics, 2019, 8(9): 920. doi: 10.3390/electronics8090920.
|
[5] |
XU Guoliang, ZHAO Yanyun, RAN Yongyi, et al. Spatial location aided fully-distributed dynamic routing for large-scale LEO satellite networks[J]. IEEE Communications Letters, 2022, 26(12): 3034–3038. doi: 10.1109/LCOMM.2022.3205300.
|
[6] |
LIAO Hailong, ZHANG Xian, ZHOU Jiaen, et al. Real-time routing design for LEO satellite networks: An enhanced multi-agent DRL approach[C]. 2024 IEEE/CIC International Conference on Communications in China (ICCC Workshops), Hangzhou, China, 2024: 547–552. doi: 10.1109/ICCCWorkshops62562.2024.10693714.
|
[7] |
MATTHIESEN B, RAZMI N, LEYVA-MAYORGA I, et al. Federated learning in satellite constellations[J]. IEEE Network, 2024, 38(2): 232–239. doi: 10.1109/MNET.132.2200504.
|
[8] |
ELMAHALLAWY M and LUO Tie. Optimizing federated learning in LEO satellite constellations via intra-plane model propagation and sink satellite scheduling[C]. ICC 2023 - IEEE International Conference on Communications, Rome, Italy, 2023: 3444–3449. doi: 10.1109/ICC45041.2023.10279316.
|
[9] |
SO J, HSIEH K, ARZANI B, et al. FedSpace: An efficient federated learning framework at satellites and ground stations[J]. arXiv: 2202.01267, 2022.
|
[10] |
FADLULLAH Z M and KATO N. On smart IoT remote sensing over integrated terrestrial-aerial-space networks: An asynchronous federated learning approach[J]. IEEE Network, 2021, 35(5): 129–135. doi: 10.1109/MNET.101.2100125.
|
[11] |
ZHAO Ming, CHEN Chen, LIU Lei, et al. Orbital collaborative learning in 6G space-air-ground integrated networks[J]. Neurocomputing, 2022, 497: 94–109. doi: 10.1016/j.neucom.2022.04.098.
|
[12] |
SINGH J, DHURANDHER S K, and WOUNGANG I. Federated learning empowered routing for opportunistic network environments[C]. 2024 IEEE International Conference on Communications Workshops (ICC Workshops), Denver, USA, 2024: 1998–2004. doi: 10.1109/ICCWorkshops59551.2024.10615288.
|
[13] |
WANG Xiaoding, HU Jia, LIN Hui, et al. QoS and privacy-aware routing for 5G-enabled industrial Internet of Things: A federated reinforcement learning approach[J]. IEEE Transactions on Industrial Informatics, 2022, 18(6): 4189–4197. doi: 10.1109/TII.2021.3124848.
|
[14] |
FENG Xinao, SUN Yaohua, and PENG Mugen. Distributed satellite-terrestrial cooperative routing strategy based on minimum hop-count analysis in mega LEO satellite constellation[J]. IEEE Transactions on Mobile Computing, 2024, 23(11): 10678–10693. doi: 10.1109/TMC.2024.3380891.
|
[15] |
张朝辉, 周嘉琦. 基于半固定分簇的无线传感器网络节能分簇路由算法[J]. 通信学报, 2024, 45(4): 160–170. doi: 10.11959/j.issn.1000-436x.2024080.
ZHANG Zhaohui and ZHOU Jiaqi. Energy-saving clustering routing algorithm based on semi-fixed cluster for wireless sensor networks[J]. Journal on Communications, 2024, 45(4): 160–170. doi: 10.11959/j.issn.1000-436x.2024080.
|
[16] |
ZHANG Hong, TIAN Hao, DONG Mianxiong, et al. FedPCC: Parallelism of communication and computation for federated learning in wireless networks[J]. IEEE Transactions on Emerging Topics in Computational Intelligence, 2022, 6(6): 1368–1377. doi: 10.1109/TETCI.2022.3170471.
|
[17] |
ZHANG Hangyu, LIU Rongke, KAUSHIK A, et al. Satellite edge computing with collaborative computation offloading: An intelligent deep deterministic policy gradient approach[J]. IEEE Internet of Things Journal, 2023, 10(10): 9092–9107. doi: 10.1109/JIOT.2022.3233383.
|
[18] |
陈宇, 张勇, 陈实. 大规模卫星集群网络自适应加权分簇算法[J]. 北京理工大学学报, 2021, 41(11): 1188–1192. doi: 10.15918/j.tbit1001-0645.2021.072.
CHEN Yu, ZHANG Yong, and CHEN Shi. Adaptive weighted clustering algorithm for large-scale satellite cluster network[J]. Transactions of Beijing Institute of Technology, 2021, 41(11): 1188–1192. doi: 10.15918/j.tbit1001-0645.2021.072.
|
[19] |
王瑞峰, 张明, 黄子恒, 等. 利用A2C-ac的城轨车车通信资源分配算法[J]. 电子与信息学报, 2024, 46(4): 1306–1313. doi: 10.11999/JEIT230623.
WANG Ruifeng, ZHANG Ming, HUANG Ziheng, et al. Resource allocation algorithm of urban rail train-to-train communication with A2C-ac[J]. Journal of Electronics & Information Technology, 2024, 46(4): 1306–1313. doi: 10.11999/JEIT230623.
|
[20] |
LI Tian, SAHU A K, ZAHEER M, et al. Federated optimization in heterogeneous networks[C]. The 3rd Conference on Machine Learning and Systems (MLSys 2020), Austin, USA, 2020: 303–313.
|