Citation: | CHEN Ningjiang, LU Yaozong. YOMANet-Accel: A Lightweight Algorithm Accelerator for Pedestrians and Vehicles Detection at the Edge[J]. Journal of Electronics & Information Technology, 2025, 47(8): 2895-2908. doi: 10.11999/JEIT250059 |
[1] |
ZHAN Jiao, LIU Jingnan, WU Yejun, et al. Multi-task visual perception for object detection and semantic segmentation in intelligent driving[J]. Remote Sensing, 2024, 16(10): 1774. doi: 10.3390/rs16101774.
|
[2] |
REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: Unified, real-time object detection[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, USA, 2016: 779–788. doi: 10.1109/CVPR.2016.91.
|
[3] |
谭郁松, 李恬, 张钰森. 面向边缘智能的神经网络模型生成与部署研究[J]. 计算机工程, 2024, 50(8): 1–12. doi: 10.19678/j.issn.1000-3428.0068554.
TAN Yusong, LI Tian, and ZHANG Yusen. Research on neural network model generation and deployment for edge intelligence[J]. Computer Engineering, 2024, 50(8): 1–12. doi: 10.19678/j.issn.1000-3428.0068554.
|
[4] |
REN Shaoqing, HE Kaiming, GIRSHICK R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137–1149. doi: 10.1109/TPAMI.2016.2577031.
|
[5] |
LIU Wei, ANGUELOV D, ERHAN D, et al. SSD: Single shot MultiBox detector[C]. The 14th European Conference on Computer Vision, Amsterdam, The Netherlands, 2016: 21–37. doi: 10.1007/978-3-319-46448-0_2.
|
[6] |
WEI Hongyang, ZHANG Qianqian, HAN Jingjing, et al. SARNet: Spatial Attention Residual Network for pedestrian and vehicle detection in large scenes[J]. Applied Intelligence, 2022, 52(15): 17718–17733. doi: 10.1007/s10489-022-03217-9.
|
[7] |
YUAN Zhenhao, WANG Zhiwen, and ZHANG Ruonan. CCBA-NMS-YD: A Vehicle pedestrian detection and tracking method based on improved YOLOv7 and DeepSort[J]. World Electric Vehicle Journal, 2024, 15(7): 309. doi: 10.3390/wevj15070309.
|
[8] |
王启明, 何梓林, 张栋林, 等. 基于YOLOv3的雾天场景行人车辆检测方法研究[J]. 控制工程, 2024, 31(3): 510–517. doi: 10.14107/j.cnki.kzgc.20211118.
WANG Qiming, HE Zilin, ZHANG Donglin, et al. Research on pedestrian and vehicle detection method based on YOLOv3 in foggy scene[J]. Control Engineering of China, 2024, 31(3): 510–517. doi: 10.14107/j.cnki.kzgc.20211118.
|
[9] |
胡丹丹, 张忠婷. 基于改进YOLOv5s的面向自动驾驶场景的道路目标检测算法[J]. 智能系统学报, 2024, 19(3): 653–660. doi: 10.11992/tis.202206034.
HU Dandan and ZHANG Zhongting. Road target detection algorithm for autonomous driving scenarios based on improved YOLOv5s[J]. CAAI Transactions on Intelligent Systems, 2024, 19(3): 653–660. doi: 10.11992/tis.202206034.
|
[10] |
WANG Haotian, ZHAO Yinghai, and GAO Fan. A convolutional neural network accelerator based on FPGA for buffer optimization[C]. 2021 IEEE 5th Advanced Information Technology, Electronic and Automation Control Conference (IAEAC), Chongqing, China, 2021: 2362–2367. doi: 10.1109/IAEAC50856.2021.9390606.
|
[11] |
ZHAO Sijie, GAO Shangshang, WANG Rugang, et al. Acceleration and implementation of convolutional neural networks based on FPGA[J]. Digital Signal Processing, 2023, 141: 104188. doi: 10.1016/j.dsp.2023.104188.
|
[12] |
KIM M, OH K, CHO Y, et al. A low-latency FPGA accelerator for YOLOv3-tiny with flexible layerwise mapping and dataflow[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2024, 71(3): 1158–1171. doi: 10.1109/TCSI.2023.3335949.
|
[13] |
刘谦, 王林林, 周文勃. 基于FPGA的YOLOv5s网络高效卷积加速器设计[J]. 电讯技术, 2024, 64(3): 366–375. doi: 10.20079/j.issn.1001-893x.230216003.
LIU Qian, WANG Linlin, and ZHOU Wenbo. Design of a YOLOv5s network efficient convolution accelerator powered by FPGA[J]. Telecommunication Engineering, 2024, 64(3): 366–375. doi: 10.20079/j.issn.1001-893x.230216003.
|
[14] |
包振山, 郭俊南, 张文博, 等. UltraAcc: 基于FPGA流水架构的低功耗高性能CNN加速器定制设计[J]. 计算机学报, 2023, 46(6): 1139–1155. doi: 10.11897/SP.J.1016.2023.01139.
BAO Zhenshan, GUO Junnan, ZHANG Wenbo, et al. UltraAcc: A customized low power and high performance CNN accelerator with dataflow on FPGAs[J]. Chinese Journal of Computers, 2023, 46(6): 1139–1155. doi: 10.11897/SP.J.1016.2023.01139.
|
[15] |
WANG C Y, BOCHKOVSKIY A, and LIAO H Y M. Scaled-YOLOv4: Scaling cross stage partial network[C]. 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, USA, 2021: 13024–13033. doi: 10.1109/CVPR46437.2021.01283.
|
[16] |
JOCHER G, STOKEN A, BOROVEC J, et al. ultralytics/YOLOv5: V4.0 - nn. SiLU() activations, Weights & Biases logging, PyTorch Hub integration[Z]. 2021. doi: 10.5281/ZENODO.4418161.
|
[17] |
WANG C Y, BOCHKOVSKIY A, and LIAO H Y M. YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]. 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Vancouver, Canada, 2022: 7464–7475. doi: 10.1109/CVPR52729.2023.00721.
|
[18] |
SANDLER M, HOWARD A, ZHU Menglong, et al. MobileNetV2: Inverted residuals and linear bottlenecks[C]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 4510–4520. doi: 10.1109/CVPR.2018.00474.
|
[19] |
LIU Yichao, SHAO Zongru, TENG Yueyang, et al. NAM: Normalization-based attention module[EB/OL]. https://arxiv.org/abs/2111.12419, 2021.
|
[20] |
ZHANG Xiangyu, ZHOU Xinyu, LIN Mengxiao, et al. ShuffleNet: An extremely efficient convolutional neural network for mobile devices[C]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 6848–6856. doi: 10.1109/CVPR.2018.00716.
|
[21] |
TAN Mingxing and LE Q. EfficientNet: Rethinking model scaling for convolutional neural networks[C]. The 36th International Conference on Machine Learning, Long Beach, USA, 2019: 6105–6114.
|
[22] |
HAN Kai, WANG Yunhe, TIAN Qi, et al. GhostNet: More features from cheap operations[C]. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, USA, 2020: 1577–1586. doi: 10.1109/CVPR42600.2020.00165.
|
[23] |
HOWARD A G, ZHU Menglong, CHEN Bo, et al. MobileNets: Efficient convolutional neural networks for mobile vision applications[EB/OL]. https://arxiv.org/abs/1704.04861, 2017.
|
[24] |
HU Jie, SHEN Li, SUN Gang, et al. Squeeze-and-excitation networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(8): 2011–2023. doi: 10.1109/TPAMI.2019.2913372.
|
[25] |
WANG Qilong, WU Banggu, ZHU Pengfei, et al. ECA-Net: Efficient channel attention for deep convolutional neural networks[C]. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, USA, 2020: 11531–11539. doi: 10.1109/CVPR42600.2020.01155.
|
[26] |
WOO S, PARK J, LEE J Y, et al. CBAM: Convolutional block attention module[C]. The 15th European Conference on Computer Vision, Munich, Germany, 2018: 3–19. doi: 10.1007/978-3-030-01234-2_1.
|
[27] |
CORDTS M, OMRAN M, RAMOS S, et al. The cityscapes dataset for semantic urban scene understanding[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, USA, 2016: 3213–3223. doi: 10.1109/CVPR.2016.350.
|
[28] |
LIU Yulin, LI Gang, HAO Liguo, et al. Research on a lightweight panoramic perception algorithm for electric autonomous mini-buses[J]. World Electric Vehicle Journal, 2023, 14(7): 179. doi: 10.3390/wevj14070179.
|
[29] |
任仕伟, 刘朝钾, 李剑铮, 等. 面向端到端目标检测神经网络的高效硬件加速系统设计[J]. 北京理工大学学报, 2022, 42(12): 1312–1320. doi: 10.15918/j.tbit1001-0645.2022.004.
REN Shiwei, LIU Chaojia, LI Jianzheng, et al. Efficient hardware acceleration system design for end-to-end object detection neural network[J]. Transactions of Beijing Institute of Technology, 2022, 42(12): 1312–1320. doi: 10.15918/j.tbit1001-0645.2022.004.
|