Citation: | LIU Yupeng, ZHANG Jiang, TANG Shichen, MENG Xin, MENG Qingfeng. Continuous Federation of Noise-resistant Heterogeneous Medical Dialogue Using the Trustworthiness-based Evaluation[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250057 |
[1] |
MCMAHAN B, MOORE E, RAMAGE D, et al. Communication-efficient learning of deep networks from decentralized data[C]. The 20th International Conference on Artificial Intelligence and Statistics, Fort Lauderdale, USA, 2017: 1273–1282.
|
[2] |
LI Tian, SAHU A K, ZAHEER M, et al. Federated optimization in heterogeneous networks[C]. The Third Conference on Machine Learning and Systems, Austin, USA, 2020, 2: 429–450.
|
[3] |
TAM K, LI Li, HAN Bo, et al. Federated noisy client learning[J]. IEEE Transactions on Neural Networks and Learning Systems, 2025, 36(1): 1799–1812. doi: 10.1109/TNNLS.2023.3336050. .
|
[4] |
XIE Mingkun and HUANG Shengjun. Partial multi-label learning with noisy label identification[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 44(7): 3676–3687. doi: 10.1109/TPAMI.2021.3059290.
|
[5] |
ROLNICK D, VEIT A, BELONGIE S, et al. Deep learning is robust to massive label noise[C]. 6th International Conference on Learning Representations, Vancouver, Canada, 2017.
|
[6] |
ANG Fan, CHEN Li, ZHAO Nan, et al. Robust federated learning with noisy communication[J]. IEEE Transactions on Communications, 2020, 68(6): 3452–3464. doi: 10.1109/TCOMM.2020.2979149.
|
[7] |
WANG Zhuowei, ZHOU Tianyi, LONG Guodong, et al. FedNoiL: A simple two-level sampling method for federated learning with noisy labels[J]. arXiv preprint arXiv: 2205.10110, 2022.
WANG Zhuowei, ZHOU Tianyi, LONG Guodong, et al. FedNoiL: A simple two-level sampling method for federated learning with noisy labels[J]. arXiv preprint arXiv: 2205.10110, 2022.
|
[8] |
ZHAO Xinyan, CHEN Liangwei, and CHEN Huanhuan. A weighted heterogeneous graph-based dialog system[J]. IEEE Transactions on Neural Networks and Learning Systems, 2023, 34(8): 5212–5217. doi: 10.1109/TNNLS.2021.3124640.
|
[9] |
SONG Wenfeng, HOU Xia, LI Shuai, et al. An intelligent virtual standard patient for medical students training based on oral knowledge graph[J]. IEEE Transactions on Multimedia, 2023, 25: 6132–6145. doi: 10.1109/TMM.2022.3205456.
|
[10] |
YAN Lian, GUAN Yi, WANG Haotian, et al. EIRAD: An evidence-based dialogue system with highly interpretable reasoning path for automatic diagnosis[J]. IEEE Journal of Biomedical and Health Informatics, 2024, 28(10): 6141–6154. doi: 10.1109/JBHI.2024.3426922.
|
[11] |
FALLAH A, MOKHTARI A, and OZDAGLAR A. Personalized federated learning with theoretical guarantees: A model-agnostic meta-learning approach[C]. The 34th International Conference on Neural Information Processing Systems, Vancouver, Canada, 2020: 300. doi: 10.5555/3495724.3496024.
|
[12] |
FINN C, ABBEEL P, and LEVINE S. Model-agnostic meta-learning for fast adaptation of deep networks[C]. The 34th International Conference on Machine Learning, Sydney, Australia, 2017: 1126–1135. doi: 10.5555/3305381.3305498.
|
[13] |
COLLINS L, HASSANI H, MOKHTARI A, et al. Exploiting shared representations for personalized federated learning[C]. The 38th International Conference on Machine Learning, 2021: 2089–2099.
|
[14] |
TAN Yan, LONG Guodong, LIU Lu, et al. FedProto: Federated prototype learning across heterogeneous clients[C]. The 36th AAAI Conference on Artificial Intelligence, 2022: 8432–8440. doi: 10.1609/aaai.v36i8.20819.
|
[15] |
LI Daliang and WANG Junpu. FedMD: Heterogenous federated learning via model distillation[J]. arXiv preprint arXiv: 1910.03581, 2019.
LI Daliang and WANG Junpu. FedMD: Heterogenous federated learning via model distillation[J]. arXiv preprint arXiv: 1910.03581, 2019.
|
[16] |
LIN Tao, KONG Lingjing, STICH S U, et al. Ensemble distillation for robust model fusion in federated learning[C]. The 34th International Conference on Neural Information Processing Systems, Vancouver, Canada, 2020: 198. doi: 10.5555/3495724.3495922.
|
[17] |
WU Chuhan, WU Fangzhao, LYU Lingjuan, et al. Communication-efficient federated learning via knowledge distillation[J]. Nature Communications, 2022, 13(1): 2032. doi: 10.1038/s41467-022-29763-x.
|
[18] |
CHEN Yiqiang, LU Wang, QIN Xin, et al. MetaFed: Federated learning among federations with cyclic knowledge distillation for personalized healthcare[J]. IEEE Transactions on Neural Networks and Learning Systems, 2024, 35(11): 16671–16682. doi: 10.1109/TNNLS.2023.3297103.
|
[19] |
CHENG Sijie, WU Jingwen, XIAO Yanghua, et al. FedGEMS: Federated learning of larger server models via selective knowledge fusion[C]. The Tenth International Conference on Learning Representations, 2022: 117–135. doi: 10.18653/v1/2021.findings-naacl.10.
|
[20] |
GHOSH A, HONG J, YIN Dong, et al. Robust federated learning in a heterogeneous environment[J]. arXiv preprint arXiv: 1906.06629, 2019.
GHOSH A, HONG J, YIN Dong, et al. Robust federated learning in a heterogeneous environment[J]. arXiv preprint arXiv: 1906.06629, 2019.
|
[21] |
TSOUVALAS V, SAEED A, OZCELEBI T, et al. Labeling chaos to learning harmony: Federated learning with noisy labels[J]. ACM Transactions on Intelligent Systems and Technology, 2024, 15(2): 22. doi: 10.1145/3626242.
|
[22] |
YANG Xin, YU Hao, GAO Xin, et al. Federated continual learning via knowledge fusion: A survey[J]. IEEE Transactions on Knowledge and Data Engineering, 2024, 36(8): 3832–3850. doi: 10.1109/TKDE.2024.3363240.
|
[23] |
YU Lang, GE Lina, WANG Guanghui, et al. PI-Fed: Continual federated learning with parameter-level importance aggregation[J]. IEEE Internet of Things Journal, 2024, 11(22): 37187–37199. doi: 10.1109/JIOT.2024.3440029.
|
[24] |
LI Dongdong, HUANG Nan, WANG Zhe, et al. Personalized federated continual learning for task-incremental biometrics[J]. IEEE Internet of Things Journal, 2023, 10(23): 20776–20788. doi: 10.1109/JIOT.2023.3284843.
|
[25] |
WANG Yisen, MA Xingjun, CHEN Zaiyi, et al. Symmetric cross entropy for robust learning with noisy labels[C]. 2019 IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Korea (South), 2019: 322–330. doi: 10.1109/ICCV.2019.00041.
|
[26] |
FANG Xiuwen and YE Mang. Robust federated learning with noisy and heterogeneous clients[C]. 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), New Orleans, USA, 2022: 10062–10071. doi: 10.1109/CVPR52688.2022.00983.
|
[27] |
ZHANG Jianqing, HUA Yang, WANG Hao, et al. FedALA: Adaptive local aggregation for personalized federated learning[C]. The 37th AAAI Conference on Artificial Intelligence, Washington, USA, 2023: 11237–11244. doi: 10.1609/aaai.v37i9.26330.
|
[28] |
ZENG Guangtao, YANG Wenmian, JU Zeqian, et al. MedDialog: Large-scale medical dialogue datasets[C]. The 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), 2020: 9241–9250. doi: 10.18653/v1/2020.emnlp-main.743.
|
[29] |
WANG Xiao, LIU Qin, GUI Tao, et al. TextFlint: Unified multilingual robustness evaluation toolkit for natural language processing[C]. Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing: System Demonstrations, 2021: 347–355. doi: 10.18653/v1/2021.acl-demo.41.
|
[30] |
RADFORD A, WU J, CHILD R, et al. Language models are unsupervised multitask learners[R]. OpenAI blog, 2019.
|
[31] |
LEWIS M, LIU Yinhan, GOYAL N, et al. BART: Denoising sequence-to-sequence pre-training for natural language generation, translation, and comprehension[C]. The 58th Annual Meeting of the Association for Computational Linguistics, 2020: 7871–7880. doi: 10.18653/v1/2020.acl-main.703.
|
[32] |
KINGMA D P and BA J. Adam: A method for stochastic optimization[C]. 3rd International Conference on Learning Representations, San Diego, USA, 2015.
|
[33] |
PU Ruizhi, YU Lixing, ZHAN Shaojie, et al. FedELR: When federated learning meets learning with noisy labels[J]. Neural Networks, 2025, 187: 107275. doi: 10.1016/j.neunet.2025.107275.
|
[34] |
WU Nannan, YU Li, JIANG Xuefeng, et al. FedNoRo: Towards noise-robust federated learning by addressing class imbalance and label noise heterogeneity[C]. The Thirty-Second International Joint Conference on Artificial Intelligence, Macao, China, 2023: 492. doi: 10.24963/ijcai.2023/492.
|