Citation: | YI Maoxiang, ZHANG Jiatong, LU Yingchun, LIANG Huaguo, MA Lixiang. A Test Vector CODEC Scheme Based on BRAM-Segmented Synchronous Table Lookup[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250053 |
[1] |
CAREY D R. Introduction to automated test systems–back to basics[C]. IEEE International Automatic Testing Conference (AUTOTESTCON), National Harbor, USA, 2019: 1–7. doi: 10.1109/AUTOTESTCON43700.2019.8961061.
|
[2] |
余蓓敏. 高速数电芯片参数测试方案优化研究[J]. 齐齐哈尔大学学报: 自然科学版, 2022, 38(2): 27–31. doi: 10.3969/j.issn.1007-984X.2022.02.006.
YU Beimin. Research on parameter test scheme optimization of high speed digital and electrical chip[J]. Journal of Qiqihar University: Natural Science Edition, 2022, 38(2): 27–31. doi: 10.3969/j.issn.1007-984X.2022.02.006.
|
[3] |
俞洋, 彭喜元, 张毅刚. 基于重复子向量的测试数据压缩算法[J]. 仪器仪表学报, 2009, 30(2): 356–361. doi: 10.3321/j.issn:0254-3087.2009.02.025.
YU Yang, PENG Xiyuan, and ZHANG Yigang. Test data compression method for multiple scan chains based on repeated sub-vectors[J]. Chinese Journal of Scientific Instrument, 2009, 30(2): 356–361. doi: 10.3321/j.issn:0254-3087.2009.02.025.
|
[4] |
詹文法, 陶鹏程. 最小游程切换点标记编码压缩方法[J]. 清华大学学报: 自然科学版, 2020, 60(10): 837–844. doi: 10.16511/j.cnki.qhdxxb.2020.26.003.
ZHAN Wenfa and TAO Pengcheng. Minimum run-changing point mark coding compression method[J]. Journal of Tsinghua University: Science and Technology, 2020, 60(10): 837–844. doi: 10.16511/j.cnki.qhdxxb.2020.26.003.
|
[5] |
SSHIMMI S and RAHIMI M. Leveraging code-test co-evolution patterns for automated test case recommendation[C]. The 3rd ACM/IEEE International Conference on Automation of Software Test (AST), Pittsburgh, USA, 2022: 65–76. doi: 10.1145/3524481.3527222.
|
[6] |
HE Hongxi, HU Jing, LI Zhi, et al. Integrated circuit test data division based on clustering algorithm[C]. The 9th International Conference on Electronic Technology and Information Science (ICETIS), Hangzhou, China, 2024: 604–608. doi: 10.1109/ICETIS61828.2024.10593743.
|
[7] |
李瑞. 一种混合分数与FDR码的测试数据压缩方法[D]. [硕士论文], 安庆师范大学, 2022. doi: 10.27761/d.cnki.gaqsf.2022.000029.
LI Rui. Test data compression method of mixed fraction and FDR code[D]. [Master dissertation], Anqing Normal University, 2022. doi: 10.27761/d.cnki.gaqsf.2022.000029.
|
[8] |
JHANCY MABEL D J and VIOLA STELLA MARY M C. A proficient test data compression and decompression system for enhanced test competence in SOC testing[C]. International Conference on Inventive Computation Technologies (ICICT), Lalitpur, Nepal, 2023: 916–920. doi: 10.1109/ICICT57646.2023.10134445.
|
[9] |
CHEN Rui and XU Lihao. SnappyR: A new high-speed lossless data compression algorithm[C]. Data Compression Conference (DCC), Snowbird, USA, 2023: 334. doi: 10.1109/DCC55655.2023.00052.
|
[10] |
ROSE J D, DHANUSHKKAR H, and JAGADISHAN M. A self-learning and lossless dictionary-based compression algorithm[C]. IEEE International Conference on Advances in Computing, Communication and Applied Informatics (ACCAI), Chennai, India, 2024: 1–7. doi: 10.1109/ACCAI61061.2024.10601915.
|
[11] |
CHEN Tian, LIN Chenxin, LIANG Huaguo, et al. A dictionary-based test data compression method using tri-state coding[C]. IEEE 27th Asian Test Symposium (ATS), Hefei, China, 2018: 42–47. doi: 10.1109/ATS.2018.00019.
|
[12] |
ZHANG Minghe, HUANG Guanglun, JI Guoliang, et al. A scan slice reordering algorithm based on minimizing entropy to enhance test data compression efficiency[C]. IEEE International Test Conference in Asia (ITC-Asia), Changsha, China, 2024: 1–6. doi: 10.1109/ITC-Asia62534.2024.10661362.
|
[13] |
李旺康. 基于SOC的测试数据压缩算法研究与分析[D]. [硕士论文], 武汉工程大学, 2023. doi: 10.27727/d.cnki.gwhxc.2023.000658.
LI Wangkang. Research on test data compression algorithm based on SOC and analysis[D]. [Master dissertation], Wuhan Institute of Technology, 2023. doi: 10.27727/d.cnki.gwhxc.2023.000658.
|
[14] |
NIMARA S, BONCALO O, AMARICAI A, et al. FPGA architecture of multi-codeword LDPC decoder with efficient BRAM utilization[C]. IEEE 19th International Symposium on Design and Diagnostics of Electronic Circuits & Systems (DDECS), Kosice, Slovakia, 2016: 1–4. doi: 10.1109/DDECS.2016.7482452.
|
[15] |
PFEIFER P and PLIVA Z. On utilization of BRAM in FPGA for advanced measurements in mechatronics[C]. IEEE International Workshop of Electronics, Control, Measurement, Signals and their Application to Mechatronics (ECMSM), Liberec, Czech Republic, 2015: 1–6. doi: 10.1109/ECMSM.2015.7208700.
|
[16] |
MANJULA C and JAYADEVAPPA D. Command driven scalable & programmable FPGA based digital test pattern generator[C]. International Conference on Electrical, Electronics, Communication, Computer, and Optimization Techniques (ICEECCOT), Mysuru, India, 2017: 440–447. doi: 10.1109/ICEECCOT.2017.8284545.
|
[17] |
ZHANG Xinrui, WANG Jian, WANG Yuan, et al. BRAM-based asynchronous FIFO in FPGA with optimized cycle latency[C]. The 11th IEEE International Conference on Solid-State and Integrated Circuit Technology (ICSSICT), Xi'an, China, 2012: 1–3. doi: 10.1109/ICSICT.2012.6467891.
|
[18] |
PFEIFER P and PLIVA Z. Delay-fault run-time XOR-less aging detection unit using BRAM in modern FPGAs[C]. The 13th IEEE Biennial Baltic Electronics Conference (BEC), Tallinn, Estonia, 2012: 81–84. doi: 10.1109/BEC.2012.6376820.
|
[19] |
NG J S, CHEN Juncheng, WU Si, et al. Improving FPGA-based Async-logic AES accelerator with the integration of sync-logic block RAMs[C]. IEEE International Symposium on Circuits and Systems (ISCAS), Monterey, USA, 2023: 1–5. doi: 10.1109/ISCAS46773.2023.10181344.
|
[20] |
KABIR M D A, HOLLIS J, PANAHI A, et al. Making BRAMs compute: Creating scalable computational memory fabric overlays[C]. IEEE 31st Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM), Marina Del Rey, USA, 2023: 224. doi: 10.1109/FCCM57271.2023.00052.
|
[21] |
LAI B C C and HUANG Kunhua. An efficient hierarchical banking structure for algorithmic multiported memory on FPGA[J]. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2017, 25(10): 2776–2788. doi: 10.1109/TVLSI.2017.2717448.
|