Citation: | YUAN Qingjun, ZHANG Haojin, FAN Haopeng, GAO Yang, WANG Yongjuan. DTDS: Dilithium Dataset for Power Analysis[J]. Journal of Electronics & Information Technology, 2025, 47(8): 2499-2508. doi: 10.11999/JEIT250048 |
[1] |
DUCAS L, KILTZ E, LEPOINT T, et al. Crystals-dilithium: A lattice-based digital signature scheme[J]. IACR Transactions on Cryptographic Hardware and Embedded Systems, 2018(1): 238–268. doi: 10.13154/tches.v2018.i1.238-268.
|
[2] |
NIST. NIST releases first 3 finalized post-quantum encryption standards[EB/OL]. https://www.nist.gov/news-events/news/2024/08/nist-releases-first-3-finalized-post-quantum-encryption-standards, 2024.
|
[3] |
MOODY D, PERLNER R, REGENSCHEID A, et al. Transition to post-quantum cryptography standards[R]. NIST IR 8547, 2024.
|
[4] |
胡伟, 袁超绚, 郑健, 等. 一种针对格基后量子密码的能量侧信道分析框架[J]. 电子与信息学报, 2023, 45(9): 3210–3217. doi: 10.11999/JEIT230267.
HU Wei, YUAN Chaoxuan, ZHENG Jian, et al. A power side-channel attack framework for lattice-based post quantum cryptography[J]. Journal of Electronics & Information Technology, 2023, 45(9): 3210–3217. doi: 10.11999/JEIT230267.
|
[5] |
王永娟, 樊昊鹏, 代政一, 等. 侧信道攻击与防御技术研究进展[J]. 计算机学报, 2023, 46(1): 202–228. doi: 10.11897/SP.J.1016.2023.00202.
WANG Yongjuan, FAN Haopeng, DAI Zhengyi, et al. Advances in side channel attacks and countermeasures[J]. Chinese Journal of Computers, 2023, 46(1): 202–228. doi: 10.11897/SP.J.1016.2023.00202.
|
[6] |
王安, 葛婧, 商宁, 等. 侧信道分析实用案例概述[J]. 密码学报, 2018, 5(4): 383–398. doi: 10.13868/j.cnki.jcr.000249.
WANG An, GE Jing, SHANG Ning, et al. Practical cases of side-channel analysis[J]. Journal of Cryptologic Research, 2018, 5(4): 383–398. doi: 10.13868/j.cnki.jcr.000249.
|
[7] |
KOCHER P, JAFFE J, and JUN B. Differential power analysis[C]. The 19th Annual International Cryptology Conference, Santa Barbara, USA, 1999: 388–397. doi: 10.1007/3-540-48405-1_25.
|
[8] |
KOCHER P. Timing attacks on implementations of diffie-hellman, RSA, DSS, and other systems[C]. The 16th Annual International Cryptology Conference, Santa Barbara, USA, 1996: 104–113. doi: 10.1007/3-540-68697-5_9.
|
[9] |
张伟娟, 白璐, 凌雨卿, 等. 缓存侧信道攻击与防御[J]. 计算机研究与发展, 2023, 60(1): 206–222. doi: 10.7544/issn1000-1239.202110774.
ZHANG Weijuan, BAI Lu, LING Yuqing, et al. Cache side-channel attacks and defenses[J]. Journal of Computer Research and Development, 2023, 60(1): 206–222. doi: 10.7544/issn1000-1239.202110774.
|
[10] |
GULLASCH D, BANGERTER E, and KRENN S. Cache games-bringing access-based cache attacks on AES to practice[C]. 2011 IEEE Symposium on Security and Privacy, Oakland, USA, 2011: 490–505. doi: 10.1109/SP.2011.22.
|
[11] |
BONEH D, DEMILLO R A, and LIPTON R J. On the importance of checking cryptographic protocols for faults[C]. International Conference on the Theory and Applications of Cryptographic Techniques, Konstanz, Germany, 1997: 37–51. doi: 10.1007/3-540-69053-0_4.
|
[12] |
MANGARD S, OSWALD E, and STANDAERT F X. One for all–all for one: Unifying standard differential power analysis attacks[J]. IET Information Security, 2011, 5(2): 100–110. doi: 10.1049/iet-ifs.2010.009.
|
[13] |
张晓宇, 陈开颜, 张阳, 等. 基于密钥差异的改进相关性分析方法研究[J]. 计算机应用研究, 2017, 34(9): 2791–2794. doi: 10.3969/j.issn.1001-3695.2017.09.050.
ZHANG Xiaoyu, CHEN Kaiyan, ZHANG Yang, et al. Improved correlation power analysis based on difference variability[J]. Application Research of Computers, 2017, 34(9): 2791–2794. doi: 10.3969/j.issn.1001-3695.2017.09.050.
|
[14] |
BRIER E, CLAVIER C, and OLIVIER F. Correlation power analysis with a leakage model[C]. Proceedings of the 6th International Conference on Cryptographic Hardware and Embedded Systems, Cambridge, USA, 2004: 16–29. doi: 10.1007/978-3-540-28632-5_2.
|
[15] |
CHARI S, RAO J R, and ROHATGI P. Template attacks[C]. The 4th International Conference on Cryptographic Hardware and Embedded Systems, Redwood Shores, USA, 2002: 13–28. doi: 10.1007/3-540-36400-5_3.
|
[16] |
王燚, 吴震, 蔺冰. 对加掩加密算法的盲掩码模板攻击[J]. 通信学报, 2019, 40(1): 1–14. doi: 10.11959/j.issn.1000-436x.2019007.
WANG Yi, WU Zhen, and LIN Bing. Blind mask template attacks on masked cryptographic algorithm[J]. Journal on Communications, 2019, 40(1): 1–14. doi: 10.11959/j.issn.1000-436x.2019007.
|
[17] |
肖冲, 唐明. 基于深度学习的侧信道分析综述[J]. 计算机学报, 2025, 48(3): 694–720. doi: 10.11897/SP.J.1016.2025.00694.
XIAO Chong and TANG Ming. A survey on deep learning-based side-channel analysis[J]. Chinese Journal of Computers, 2025, 48(3): 694–720. doi: 10.11897/SP.J.1016.2025.00694.
|
[18] |
HETTWER B, GEHRER S, and GÜNEYSU T. Applications of machine learning techniques in side-channel attacks: A survey[J]. Journal of Cryptographic Engineering, 2020, 10(2): 135–162. doi: 10.1007/s13389-019-00212-8.
|
[19] |
BENADJILA R, PROUFF E, STRULLU R, et al. Deep learning for side-channel analysis and introduction to ASCAD database[J]. Journal of Cryptographic Engineering, 2020, 10(2): 163–188. doi: 10.1007/s13389-019-00220-8.
|
[20] |
KIM J, PICEK S, HEUSER A, et al. Make some noise. Unleashing the power of convolutional neural networks for profiled side-channel analysis[J]. IACR Transactions on Cryptographic Hardware and Embedded Systems, 2019(3): 148–179. doi: 10.13154/tches.v2019.i3.148-179.
|
[21] |
GAO Yiwen, ZHANG Hailong, CHENG Wei, et al. Electro-magnetic analysis of GPU-based AES implementation[C]. The 55th Annual Design Automation Conference, San Francisco, USA, 2018: 121. doi: 10.1145/3195970.3196042.
|
[22] |
BERZATI A, VIERA A C, CHARTOUNY M, et al. Exploiting intermediate value leakage in dilithium: a template-based approach[J]. IACR Transactions on Cryptographic Hardware and Embedded Systems, 2023(4): 188–210. doi: 10.46586/tches.v2023.i4.188-210.
|
[23] |
QIAO Zehua, LIU Yuejun, ZHOU Yongbin, et al. Practical public template attacks on CRYSTALS-dilithium with randomness leakages[J]. IEEE Transactions on Information Forensics and Security, 2023, 18: 1–14. doi: 10.1109/TIFS.2022.3215913.
|
[24] |
WANG Ruize, NGO K, GÄRTNER J, et al. Unpacking needs protection: A single-trace secret key recovery attack on dilithium[J]. IACR Communications in Cryptology, 2024, 1(3): 26. doi: 10.62056/a0fh89n4e.
|
[25] |
ULITZSCH V Q, MARZOUGUI S, MEHDI T, et al. Profiling side-channel attacks on dilithium: A small bit-fiddling leak breaks it all[C]. The 29th International Conference on Selected Areas in Cryptography, Windsor, Canada, 2022: 3–32. doi: 10.1007/978-3-031-58411-4_1.
|
[26] |
FAN Haopeng, ZHANG Hailong, WANG Yongjuan, et al. Screening least square technique assisted multivariate template attack against the random polynomial generation of dilithium[J]. IEEE Transactions on Information Forensics and Security, 2024, 19: 7118–7132. doi: 10.1109/TIFS.2024.3430854.
|
[27] |
BRUINDERINK L G and PESSL P. Differential fault attacks on deterministic lattice signatures[J]. IACR Transactions on Cryptographic Hardware and Embedded Systems, 2018(3): 21–43. doi: 10.13154/tches.v2018.i3.21-43.
|
[28] |
PICEK S, PERIN G, MARIOT L, et al. SoK: Deep learning-based physical side-channel analysis[J]. ACM Computing Surveys, 2023, 55(11): 227. doi: 10.1145/3569577.
|