Citation: | HU Ze, CHEN Zhinan, YANG Hongyu. A Fake News Detection Approach Enhanced by Multi-Source Feature Fusion[J]. Journal of Electronics & Information Technology, 2025, 47(8): 2919-2934. doi: 10.11999/JEIT250041 |
[1] |
TOUAHRI I and MAZROUI A. Survey of machine learning techniques for Arabic fake news detection[J]. Artificial Intelligence Review, 2024, 57(6): 157. doi: 10.1007/s10462-024-10778-3.
|
[2] |
OLAN F, JAYAWICKRAMA U, ARAKPOGUN E O, et al. Fake news on social media: The impact on society[J]. Information Systems Frontiers, 2024, 26(2): 443–458. doi: 10.1007/s10796-022-10242-z.
|
[3] |
李雯萱. 基于多模态深度融合的跨领域虚假新闻检测研究[D]. [硕士论文], 中国人民公安大学, 2024. doi: 10.27634/d.cnki.gzrgu.2024.000330.
LI Wenxuan. Cross-domain fake news detection based on multi-modal deep fusion[D]. [Master dissertation], People’s Public Security University of China, 2024. doi: 10.27634/d.cnki.gzrgu.2024.000330.
|
[4] |
ZHANG Litian, ZHANG Xiaoming, ZHOU Ziyi, et al. Reinforced adaptive knowledge learning for multimodal fake news detection[C]. Proceedings of the 38th AAAI Conference on Artificial Intelligence, Vancouver, Canada, 2024: 16777–16785. doi: 10.1609/aaai.v38i15.29618.
|
[5] |
白轩瑜, 王陆一, 赵若思. 神经网络在船舶轨迹异常行为识别中的应用研究[J]. 信息与电脑(理论版), 2024, 36(18): 21–23.
BAI Xuanyu, WANG Luyi, and ZHAO Ruosi. Research on the application of neural network in the recognition of abnormal behavior of ship trajectory[J]. Information & Computer, 2024, 36(18): 21–23.
|
[6] |
胡潇戈. 多模态特征融合的社交媒体虚假新闻检测研究[D]. [硕士论文], 武汉大学, 2020. doi: 10.27379/d.cnki.gwhdu.2020.001194.
HU Xiaoge. Fake news detection on social media with multimodal feature fusion[D]. [Master dissertation], Wuhan University, 2020. doi: 10.27379/d.cnki.gwhdu.2020.001194.
|
[7] |
CAPUANO N, FENZA G, LOIA V, et al. Content-based fake news detection with machine and deep learning: A systematic review[J]. Neurocomputing, 2023, 530: 91–103. doi: 10.1016/j.neucom.2023.02.005.
|
[8] |
ALGHAMDI J, LIN Yuqing, and LUO Suhuai. Towards COVID-19 fake news detection using transformer-based models[J]. Knowledge-Based Systems, 2023, 274: 110642. doi: 10.1016/j.knosys.2023.110642.
|
[9] |
SU Xing, YANG Jian, WU Jia, et al. Mining user-aware multi-relations for fake news detection in large scale online social networks[C]. The Sixteenth ACM International Conference on Web Search and Data Mining, Singapore, Singapore, 2023: 51–59. doi: 10.1145/3539597.3570478.
|
[10] |
RAZA S and DING Chen. Fake news detection based on news content and social contexts: A transformer-based approach[J]. International Journal of Data Science and Analytics, 2022, 13(4): 335–362. doi: 10.1007/s41060-021-00302-z.
|
[11] |
RUCHANSKY N, SEO S, and LIU Yan. CSI: A hybrid deep model for fake news detection[C]. 2017 ACM on Conference on Information and Knowledge Management, Singapore, 2017: 797–806. doi: 10.1145/3132847.3132877.
|
[12] |
SHU Kai, CUI Limeng, WANG Suhang, et al. dEFEND: Explainable fake news detection[C]. The 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, Anchorage, USA, 2019: 395–405. doi: 10.1145/3292500.3330935.
|
[13] |
HU Guimin, LU Guangming, and ZHAO Yi. Bidirectional hierarchical attention networks based on document-level context for emotion cause extraction[C]. Findings of the Association for Computational Linguistics: EMNLP 2021, Punta Cana, Dominican Republic, 2021: 558–568. doi: 10.18653/v1/2021.findings-emnlp.51.
|
[14] |
VATTER J, MAYER R, and JACOBSEN H A. The evolution of distributed systems for graph neural networks and their origin in graph processing and deep learning: A survey[J]. ACM Computing Surveys, 2023, 56(1): 6. doi: 10.1145/3597428.
|
[15] |
WU Zonghan, PAN Shirui, CHEN Fengwen, et al. A comprehensive survey on graph neural networks[J]. IEEE Transactions on Neural Networks and Learning Systems, 2021, 32(1): 4–24. doi: 10.1109/TNNLS.2020.2978386.
|
[16] |
BHATTI U A, TANG Hao, WU Guilu, et al. Deep learning with graph convolutional networks: An overview and latest applications in computational intelligence[J]. International Journal of Intelligent Systems, 2023, 2023(1): 8342104. doi: 10.1155/2023/8342104.
|
[17] |
LI Zhifei, ZHAO Yue, ZHANG Yan, et al. Multi-relational graph attention networks for knowledge graph completion[J]. Knowledge-Based Systems, 2022, 251: 109262. doi: 10.1016/j.knosys.2022.109262.
|
[18] |
WU Haiyan, ZHANG Zhiqiang, SHI Shaoyun, et al. Phrase dependency relational graph attention network for aspect-based sentiment analysis[J]. Knowledge-Based Systems, 2022, 236: 107736. doi: 10.1016/j.knosys.2021.107736.
|
[19] |
HAN Yi, KARUNASEKERA S, and LECKIE C. Graph neural networks with continual learning for fake news detection from social media[J]. arXiv preprint arXiv: 2007.03316, 2020.
|
[20] |
BIAN Tian, XIAO Xi, XU Tingyang, et al. Rumor detection on social media with bi-directional graph convolutional networks[C]. The 34th AAAI Conference on Artificial Intelligence, New York, USA, 2020: 549–556. doi: 10.1609/aaai.v34i01.5393.
|
[21] |
MONTI F, FRASCA F, EYNARD D, et al. Fake news detection on social media using geometric deep learning[J]. arXiv preprint arXiv: 1902.06673, 2019.
|
[22] |
DOU Yingtong, SHU Kai, XIA Congying, et al. User preference-aware fake news detection[C]. The 44th International ACM SIGIR Conference on Research and Development in Information Retrieval, Virtual Event, Canada, 2021: 2051–2055. doi: 10.1145/3404835.3462990.
|
[23] |
REN Yuyang and ZHANG Jiawei. Fake news detection on news-oriented heterogeneous information networks through hierarchical graph attention[C]. 2021 International Joint Conference on Neural Networks (IJCNN), Shenzhen, China, 2021: 1–8. doi: 10.1109/IJCNN52387.2021.9534362.
|
[24] |
郎广智. 基于内容的虚假新闻检测方法研究及实现[D]. [硕士论文], 北京交通大学, 2022. doi: 10.26944/d.cnki.gbfju.2022.003502.
LANG Guangzhi. Research and implementation of content-based fake news detection method[D]. [Master dissertation], Beijing Jiaotong University, 2022. doi: 10.26944/d.cnki.gbfju.2022.003502.
|
[25] |
BAI Song, ZHANG Feihu, and TORR P H S. Hypergraph convolution and hypergraph attention[J]. Pattern Recognition, 2021, 110: 107637. doi: 10.1016/j.patcog.2020.107637.
|
[26] |
SAKONG D, VU V H, HUYNH T T, et al. Higher-order knowledge-enhanced recommendation with heterogeneous hypergraph multi-attention[J]. Information Sciences, 2024, 680: 121165. doi: 10.1016/j.ins.2024.121165.
|
[27] |
WANG Mengke, LIU Weifeng, YUAN Xinan, et al. Parallel hypergraph convolutional neural networks for image annotation[C]. 2022 41st Chinese Control Conference (CCC), Hefei, China, 2022: 6582–6587. doi: 10.23919/CCC55666.2022.9901938.
|
[28] |
JIN Yilun, YIN Wei, WANG Haoseng, et al. Capturing word positions does help: A multi-element hypergraph gated attention network for document classification[J]. Expert Systems with Applications, 2024, 251: 124002. doi: 10.1016/j.eswa.2024.124002.
|
[29] |
SALAMANOS N, LEONIDOU P, LAOUTARIS N, et al. HyperGraphDis: Leveraging hypergraphs for contextual and social-based disinformation detection[C]. The 18th International AAAI Conference on Web and Social Media, Buffalo, USA, 2024: 1381–1394. doi: 10.1609/icwsm.v18i1.31396.
|
[30] |
ZHANG Ruochi, ZOU Yuesong, and MA Jian. Hyper-SAGNN: A self-attention based graph neural network for hypergraphs[J]. arXiv preprint arXiv: 1911.02613, 2019.
|
[31] |
DING Kaize, WANG Jianling, LI Jundong, et al. Be more with less: Hypergraph attention networks for inductive text classification[C]. The 2020 Conference on Empirical Methods in Natural Language Processing, 2020: 4927–4936. doi: 10.18653/v1/2020.emnlp-main.399.
|
[32] |
JEONG U, DING Kaize, CHENG Lu, et al. Nothing stands alone: Relational fake news detection with hypergraph neural networks[C]. 2022 IEEE International Conference on Big Data (Big Data), Osaka, Japan, 2022: 596–605. doi: 10.1109/BigData55660.2022.10020234.
|
[33] |
GIORDANO G, CATONE M C, and PRIMERANO I. The fake news phenomenon in the scientific debate: Evidence from a bibliometric analysis[J]. Social Indicators Research, 2025, 177(1): 31–52. doi: 10.1007/s11205-024-03485-7.
|
[34] |
ZHANG Chaowei, GUPTA A, QIN Xiao, et al. A computational approach for real-time detection of fake news[J]. Expert Systems with Applications, 2023, 221: 119656. doi: 10.1016/j.eswa.2023.119656.
|
[35] |
HAMILTON W L, YING R, and LESKOVEC J. Inductive representation learning on large graphs[C]. The 31st International Conference on Neural Information Processing Systems, Long Beach, USA, 2017: 1025–1035.
|
[36] |
KONDAMUDI M R, SAHOO S R, CHOUHAN L, et al. A comprehensive survey of fake news in social networks: Attributes, features, and detection approaches[J]. Journal of King Saud University-Computer and Information Sciences, 2023, 35(6): 101571. doi: 10.1016/j.jksuci.2023.101571.
|
[37] |
LIU Qi, JIN Yuanyuan, CAO Xuefei, et al. An entity ontology-based knowledge graph embedding approach to news credibility assessment[J]. IEEE Transactions on Computational Social Systems, 2024, 11(4): 5308–5318. doi: 10.1109/TCSS.2023.3342873.
|
[38] |
OUYANG Jihong, XUAN Chang, WANG Bing, et al. Aspect-based sentiment classification with aspect-specific hypergraph attention networks[J]. Expert Systems with Applications, 2024, 248: 123412. doi: 10.1016/j.eswa.2024.123412.
|
[39] |
ZHANG Yitian, MA Liheng, PAL S, et al. Multi-resolution time-series transformer for long-term forecasting[C]. The 27th International Conference on Artificial Intelligence and Statistics, València, Spain, 2024: 4222–4230.
|
[40] |
FAN Jin, ZHANG Ke, HUANG Yipan, et al. Parallel spatio-temporal attention-based TCN for multivariate time series prediction[J]. Neural Computing and Applications, 2023, 35(18): 13109–13118. doi: 10.1007/s00521-021-05958-z.
|
[41] |
HASSANIN M, ANWAR S, RADWAN I, et al. Visual attention methods in deep learning: An in-depth survey[J]. Information Fusion, 2024, 108: 102417. doi: 10.1016/j.inffus.2024.102417.
|
[42] |
CHITTY-VENKATA K T, MITTAL S, EMANI M, et al. A survey of techniques for optimizing transformer inference[J]. Journal of Systems Architecture, 2023, 144: 102990. doi: 10.1016/j.sysarc.2023.102990.
|
[43] |
SUN Haoran, TANG Jinchuan, DANG Shuping, et al. Privacy and distribution preserving generative adversarial networks with sample balancing[J]. Expert Systems with Applications, 2024, 258: 125181. doi: 10.1016/j.eswa.2024.125181.
|
[44] |
YANG Hongyu, ZHANG Jinjiao, ZHANG Liang, et al. MRAN: Multimodal relationship-aware attention network for fake news detection[J]. Computer Standards & Interfaces, 2024, 89: 103822. doi: 10.1016/j.csi.2023.103822.
|
[45] |
李旭. 基于应用分类的安卓恶意应用检测模型[D]. [硕士论文], 广州大学, 2019.
LI Xu. Android malware detection model based on application classification[D]. [Master dissertation], Guangzhou University, 2019.
|
[46] |
卢楠滟. 风电功率爬坡事件识别技术研究[D]. [硕士论文], 华北电力大学, 2022. doi: 10.27140/d.cnki.ghbbu.2022.000754.
LU Nanyan. Research on wind power ramp recognition[D]. [Master dissertation], North China Electric Power University, 2022. doi: 10.27140/d.cnki.ghbbu.2022.000754.
|
[47] |
JIANG Nan, TU Ziang, PEI Kanglu, et al. RTrust: Toward robust trust evaluation framework for fake news detection in online social networks[J]. World Wide Web, 2024, 27(6): 76. doi: 10.1007/s11280-024-01317-9.
|
[48] |
SONG Chenguang, SHU Kai, and WU Bin. Temporally evolving graph neural network for fake news detection[J]. Information Processing & Management, 2021, 58(6): 102712. doi: 10.1016/j.ipm.2021.102712.
|
[49] |
MATSUMOTO H, YOSHIDA S, and MUNEYASU M. Propagation-based fake news detection using graph neural networks with transformer[C]. 2021 IEEE 10th Global Conference on Consumer Electronics (GCCE), Kyoto, Japan, 2021: 19–20. doi: 10.1109/GCCE53005.2021.9621803.
|
[50] |
YING Xue. An overview of overfitting and its solutions[J]. Journal of Physics: Conference Series, 2019, 1168: 022022. doi: 10.1088/1742-6596/1168/2/022022.
|