Citation: | ZHANG Siyong, QIU Jiefan, ZHAO Xiangyun, XIAO Kejiang, CHEN Xiaofu, MAO Keji. Depression Screening Method Driven by Global-Local Feature Fusion[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250035 |
[1] |
WHO. Depression and other common mental disorders: Global health estimates[R]. 2017.
|
[2] |
HERRMAN H, PATEL V, KIELING C, et al. Time for united action on depression: A lancet–world psychiatric association commission[J]. The Lancet, 2022, 399(10328): 957–1022. doi: 10.1016/S0140-6736(21)02141-3.
|
[3] |
THAPAR A, EYRE O, PATEL V, et al. Depression in young people[J]. The Lancet, 2022, 400(10352): 617–631. doi: 10.1016/S0140-6736(22)01012-1.
|
[4] |
ROBERSON K and CARTER R T. The relationship between race-based traumatic stress and the Trauma Symptom Checklist: Does racial trauma differ in symptom presentation?[J]. Traumatology, 2022, 28(1): 120–128. doi: 10.1037/trm0000306.
|
[5] |
CARROZZINO D, PATIERNO C, PIGNOLO C, et al. The concept of psychological distress and its assessment: A clinimetric analysis of the SCL-90-R[J]. International Journal of Stress Management, 2023, 30(3): 235–248. doi: 10.1037/str0000280.
|
[6] |
HAJDUSKA-DÉR B, KISS G, SZTAHÓ D, et al. The applicability of the Beck Depression Inventory and Hamilton Depression Scale in the automatic recognition of depression based on speech signal processing[J]. Frontiers in Psychiatry, 2022, 13: 879896. doi: 10.3389/fpsyt.2022.879896.
|
[7] |
LEE A and PARK J. Diagnostic test accuracy of the beck depression inventory for detecting major depression in adolescents: A systematic review and meta-analysis[J]. Clinical Nursing Research, 2022, 31(8): 1481–1490. doi: 10.1177/10547738211065105.
|
[8] |
张五芳, 马宁, 王勋, 等. 2020年全国严重精神障碍患者管理治疗现状分析[J]. 中华精神科杂志, 2022, 55(2): 122–128. doi: 10.3760/cma.j.cn113661-20210818-00252.
ZHANG Wufang, MA Ning, WANG Xun, et al. Management and services for psychosis in the People′s Republic of China in 2020[J]. Chinese Journal of Psychiatry, 2022, 55(2): 122–128. doi: 10.3760/cma.j.cn113661-20210818-00252.
|
[9] |
BABU N V and KANAGA E G M. Sentiment analysis in social media data for depression detection using artificial intelligence: A review[J]. SN Computer Science, 2022, 3(1): 74. doi: 10.1007/s42979-021-00958-1.
|
[10] |
EID M M, YUNDONG W, MENSAH G B, et al. Treating psychological depression utilising artificial intelligence: AI for precision medicine-focus on procedures[J]. Mesopotamian Journal of Artificial Intelligence in Healthcare, 2023, 2023: 76–81. doi: 10.58496/MJAIH/2023/015.
|
[11] |
SANCHEZ A, VAZQUEZ C, MARKER C, et al. Attentional disengagement predicts stress recovery in depression: An eye-tracking study[J]. Journal of Abnormal Psychology, 2013, 122(2): 303–313. doi: 10.1037/a0031529.
|
[12] |
ZHANG Kaipeng, ZHANG Zhanpeng, LI Zhifeng, et al. Joint face detection and alignment using multitask cascaded convolutional networks[J]. IEEE signal processing letters, 2016, 23(10): 1499–1503. doi: 10.1109/LSP.2016.2603342.
|
[13] |
WANG Yang, WANG Hongyuan, and XIN Zihao. Efficient detection model of steel strip surface defects based on YOLO-V7[J]. IEEE Access, 2022, 10: 133936–133944. doi: 10.1109/ACCESS.2022.3230894.
|
[14] |
HO J, KALCHBRENNER N, WEISSENBORN D, et al. Axial attention in multidimensional transformers[J]. arXiv preprint arXiv: 1912.12180, 2019.
|
[15] |
LIU Zhuang, MAO Hanzi, WU Chaoyuan, et al. A ConvNet for the 2020s[C]. The IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, USA, 2022: 11966–11976. doi: 10.1109/CVPR52688.2022.01167.
|
[16] |
WOO S, PARK J, LEE J Y, et al. CBAM: Convolutional block attention module[C]. The 15th European Conference on Computer Vision (ECCV), Munich, Germany, 2018: 3–19. doi: 10.1007/978-3-030-01234-2_1.
|
[17] |
HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]. The IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 770–778. doi: 10.1109/CVPR.2016.90.
|
[18] |
SELVARAJU R R, COGSWELL M, DAS A, et al. Grad-CAM: Visual explanations from deep networks via gradient-based localization[C]. The IEEE International Conference on Computer Vision, Venice, Italy, 2017: 618–626. doi: 10.1109/ICCV.2017.74.
|
[19] |
ZHOU Xiuzhuang, JIN Kai, SHANG Yuanyuan, et al. Visually interpretable representation learning for depression recognition from facial images[J]. IEEE Transactions on Affective Computing, 2020, 11(3): 542–552. doi: 10.1109/TAFFC.2018.2828819.
|
[20] |
DE MELO W C, GRANGER E, and HADID A. Depression detection based on deep distribution learning[C]. 2019 IEEE International Conference on Image Processing (ICIP), Taipei, China, 2019: 4544–4548. doi: 10.1109/ICIP.2019.8803467.
|
[21] |
DE MELO W C, GRANGER E, and LOPEZ M B. Encoding temporal information for automatic depression recognition from facial analysis[C]. ICASSP 2020–2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Barcelona, Spain, 2020: 1080–1084. doi: 10.1109/ICASSP40776.2020.9054375.
|
[22] |
SONG Siyang, JAISWAL S, SHEN Linlin, et al. Spectral representation of behaviour primitives for depression analysis[J]. IEEE Transactions on Affective Computing, 2022, 13(2): 829–844. doi: 10.1109/TAFFC.2020.2970712.
|
[23] |
于明, 徐心怡, 师硕, 等. 基于面部深度空时特征的抑郁症识别算法[J]. 电视技术, 2020, 44(11): 12–18. doi: 10.16280/j.videoe.2020.11.04.
YU Ming, XU Xinyi, SHI Shuo, et al. Depression recognition algorithm based on facial deep spatio-temporal features[J]. Video Engineering, 2020, 44(11): 12–18. doi: 10.16280/j.videoe.2020.11.04.
|
[24] |
HE Lang, CHAN J C W, and WANG Zhongmin. Automatic depression recognition using CNN with attention mechanism from videos[J]. Neurocomputing, 2021, 422: 165–175. doi: 10.1016/j.neucom.2020.10.015.
|
[25] |
NIU Mingyue, TAO Jianhua, and LIU Bin. Multi-scale and multi-region facial discriminative representation for automatic depression level prediction[C]. The ICASSP 2021–2021 IEEE International Conference on Acoustics, Speech and Signal Processing, Toronto, Canada, 2021: 1325–1329. doi: 10.1109/ICASSP39728.2021.9413504.
|
[26] |
ZHENG Yajing, WU Xiaohang, LIN Xiaoming, et al. The prevalence of depression and depressive symptoms among eye disease patients: A systematic review and meta-analysis[J]. Scientific Reports, 2017, 7(1): 46453. doi: 10.1038/srep46453.
|
[27] |
BALTRUSAITIS T, ZADEH A, LIM Y C, et al. OpenFace 2.0: Facial behavior analysis toolkit[C]. 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018). Xi’an, China, 2018: 59–66. doi: 10.1109/FG.2018.00019.
|
[28] |
BULAT A and TZIMIROPOULOS G. How far are we from solving the 2D & 3D face alignment problem? (and a dataset of 230, 000 3D facial landmarks)[C]. The IEEE International Conference on Computer Vision, Venice, Italy, 2017: 1021–1030. doi: 10.1109/ICCV.2017.116.
|
[29] |
HAN Kai, XIAO An, WU Enhua, et al. Transformer in transformer[C]. The 35th International Conference on Neural Information Processing Systems, 2021: 1217.
|
[30] |
DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16x16 words: Transformers for image recognition at scale[C]. The 9th International Conference on Learning Representations, Austria, 2021.
|
[31] |
DEROGATIS L R and CLEARY P A. Confirmation of the dimensional structure of the scl‐90: A study in construct validation[J]. Journal of Clinical Psychology, 1977, 33(4): 981–989. doi: 10.1002/1097-4679(197710)33:4<981::AID-JCLP2270330412>3.0.CO;2-0.
|
[32] |
美国精神病学协会, 张道龙, 等译. 精神障碍诊断和统计手册[M]. 5版. 北京: 北京大学出版社, 2015: 70–71.
American Psychiatric Association, ZHANG Daolong, et al. translation. Diagnostic and Statistical Manual of Mental Disorders[M]. 5th ed. Beijing: Peking University Press, 2015: 70–71.
|
[33] |
SHANG Yuanyuan, PAN Yuchen, JIANG Xiao, et al. LQGDNet: A local quaternion and global deep network for facial depression recognition[J]. IEEE Transactions on Affective Computing, 2023, 14(3): 2557–2563. doi: 10.1109/TAFFC.2021.3139651.
|
[34] |
DE MELO W C, GRANGER E, and LÓPEZ M B. MDN: A deep maximization-differentiation network for spatio-temporal depression detection[J]. IEEE Transactions on Affective Computing, 2023, 14(1): 578–590. doi: 10.1109/TAFFC.2021.3072579.
|
[35] |
ONYEMA E M, SHUKLA P K, DALAL S, et al. Enhancement of patient facial recognition through deep learning algorithm: ConvNet[J]. Journal of Healthcare Engineering, 2021, 2021(1): 5196000. doi: 10.1155/2021/5196000.
|
[36] |
PAN Yuchen, SHANG Yuanyuan, SHAO Zhuhong, et al. Integrating deep facial priors into landmarks for privacy preserving multimodal depression recognition[J]. IEEE Transactions on Affective Computing, 2024, 15(3): 828–836. doi: 10.1109/TAFFC.2023.3296318.
|
[37] |
CASADO C Á, CAÑELLAS M L, and LÓPEZ M B. Depression recognition using remote photoplethysmography from facial videos[J]. IEEE Transactions on Affective Computing, 2023, 14(4): 3305–3316. doi: 10.1109/TAFFC.2023.3238641.
|
[38] |
ZHANG Shiqing, ZHANG Xingnan, ZHAO Xiaoming, et al. MTDAN: A lightweight multi-scale temporal difference attention networks for automated video depression detection[J]. IEEE Transactions on Affective Computing, 2024, 15(3): 1078–1089. doi: 10.1109/TAFFC.2023.3312263.
|
[39] |
PAN Yuchen, SHANG Yuanyuan, LIU Tie, et al. Spatial–temporal attention network for depression recognition from facial videos[J]. Expert Systems with Applications, 2024, 237: 121410. doi: 10.1016/j.eswa.2023.121410.
|
[40] |
DAI Ziqian, LI Qiuping, SHANG Yichen, et al. Depression detection based on facial expression, audio and gait[C]. 2023 IEEE 6th Information Technology, Networking, Electronic and Automation Control Conference (ITNEC), Chongqing, China, 2023: 1568–1573. doi: 10.1109/ITNEC56291.2023.10082163.
|
[41] |
XU Jiaqi, GUNES H, KUSUMAM K, et al. Two-stage temporal modelling framework for video-based depression recognition using graph representation[J]. IEEE Transactions on Affective Computing, 2025, 16(1): 161–178. doi: 10.1109/TAFFC.2024.3415770.
|