Citation: | GAO Jian, CUI Qingxiang, ZHENG Yuqi. Asymptotically Good Multi-twisted Codes over Finite Chain Rings[J]. Journal of Electronics & Information Technology, 2025, 47(8): 2800-2807. doi: 10.11999/JEIT250032 |
[1] |
AYDIN N and HALILOVIĆ A. A generalization of quasi-twisted codes: Multi-twisted codes[J]. Finite Fields and Their Applications, 2017, 45: 96–106. doi: 10.1016/j.ffa.2016.12.002.
|
[2] |
SHARMA A, CHAUHAN V, and SINGH H. Multi-twisted codes over finite fields and their dual codes[J]. Finite Fields and Their Applications, 2018, 51: 270–297. doi: 10.1016/j.ffa.2018.01.012.
|
[3] |
SHARMA A and CHAUHAN V. Skew multi-twisted codes over finite fields and their Galois duals[J]. Finite Fields and Their Applications, 2019, 59: 297–334. doi: 10.1016/j.ffa.2019.06.005.
|
[4] |
CHAUHAN V, SHARMA A, SHARMA S, et al. Hamming weight distributions of multi-twisted codes over finite fields[J]. Designs, Codes and Cryptography, 2021, 89(8): 1787–1837. doi: 10.1007/s10623-021-00889-1.
|
[5] |
CHAUHAN V and SHARMA A. A generalization of multi-twisted codes over finite fields, their Galois duals and type II codes[J]. Journal of Applied Mathematics and Computing, 2022, 68(2): 1413–1447. doi: 10.1007/s12190-021-01574-1.
|
[6] |
MAHMOUDI S and SAMEI K. Every ${\mathbb{F}_q}$-linear code is equivalent to a multi-twisted code[J]. Advances in Mathematics of Communications, 2025, 19(2): 560–571. doi: 10.3934/amc.2024011.
|
[7] |
MARTINEZ-PEREZ C and WILLEMS W. Is the class of cyclic codes asymptotically good?[J]. IEEE Transactions on Information Theory, 2006, 52(2): 696–700. doi: 10.1109/TIT.2005.862123.
|
[8] |
FAN Yun and LIN Liren. Thresholds of random quasi-Abelian codes[J]. IEEE Transactions on Information Theory, 2015, 61(1): 82–90. doi: 10.1109/TIT.2014.2368138.
|
[9] |
FAN Yun and LIU Hualu. Quasi-cyclic codes of index $1\frac{1}{3}$[J]. IEEE Transactions on Information Theory, 2016, 62(11): 6342–6347. doi: 10.1109/TIT.2016.2602842.
|
[10] |
MI Jiafu and CAO Xiwang. Asymptotically good quasi-cyclic codes of fractional index[J]. Discrete Mathematics, 2018, 341(2): 308–314. doi: 10.1016/j.disc.2017.08.042.
|
[11] |
GAO Jian and HOU Xiaotong. $ {\mathbb{Z}_4} $-double cyclic codes are asymptotically good[J]. IEEE Communications Letters, 2020, 24(8): 1593–1597. doi: 10.1109/LCOMM.2020.2992501.
|
[12] |
ZHU Hongwei and SHI Minjia. Several classes of asymptotically good quasi-twisted codes with a low index[J]. Journal of Applied Mathematics and Computing, 2022, 68(2): 1227–1244. doi: 10.1007/s12190-021-01564-3.
|
[13] |
SHARMA S and SHARMA A. Multi-twisted additive codes over finite fields are asymptotically good[J]. Cryptography and Communications, 2023, 15(1): 17–33. doi: 10.1007/s12095-022-00583-6.
|
[14] |
SHARMA S and SHARMA A. Multi-twisted additive self-orthogonal and ACD codes are asymptotically good[J]. Finite Fields and Their Applications, 2024, 93: 102319. doi: 10.1016/j.ffa.2023.102319.
|
[15] |
姚婷, 唐永生, 许和乾. 渐近好的加性循环码的存在性[J]. 系统科学与数学, 2024, 44(12): 3779–3789. doi: 10.12341/jssms240011.
YAO Ting, TANG Yongsheng, and XU Heqian. Asymptotically good additive cyclic codes exist[J]. Journal of Systems Science and Mathematical Sciences, 2024, 44(12): 3779–3789. doi: 10.12341/jssms240011.
|
[16] |
GHOSH M, PATHAK S, and MAITY D. On $ {\mathbb{Z}_{{p^r}}}{\text{ }}{\mathbb{Z}_{{p^s}}}{\text{ }}{\mathbb{Z}_{{p^t}}}{\text{ }} $-additive cyclic codes exhibit asymptotically good properties[J]. Cryptography and Communications, 2024, 16(6): 1559–1580. doi: 10.1007/s12095-024-00737-8.
|
[17] |
YADAV B P. $ {\mathbb{F}_p}RS $-additive cyclic codes are asymptotically good[J]. IEEE Access, 2024, 12: 194598–194608. doi: 10.1109/ACCESS.2024.3519440.
|
[18] |
MENG Xiangrui, GAO Jian, and FU Fangwei. Asymptotically good generalized quasi-cyclic codes over finite chain rings[J]. Advances in Mathematics of Communications, 2025, 19(1): 36–48. doi: 10.3934/amc.2023034.
|
[19] |
ZHANG Guanghui, LIN Liren, and LIU Xuemei. Asymptotically good LCD 2-quasi-abelian codes over finite fields[J]. Discrete Mathematics, 2025, 348(1): 114224. doi: 10.1016/j.disc.2024.114224.
|
[20] |
NORTON G H and SĂLĂGEAN A. On the structure of linear and cyclic codes over a finite chain ring[J]. Applicable Algebra in Engineering, Communication and Computing, 2000, 10(6): 489–506. doi: 10.1007/PL00012382.
|
[21] |
JITMAN S and UDOMKAVANICH P. The Gray image of codes over finite chain rings[J]. arXiv preprint arXiv: 0907.3397, 2009.
|
[22] |
JITMAN S, LING S, and UDOMKAVANICH P. Skew constacyclic codes over finite chain rings[J]. Advances in Mathematics of Communications, 2012, 6(1): 39–63. doi: 10.3934/amc.2012.6.39.
|
[23] |
MITZENMACHER M and UPFAL E. Probability and Computing: Randomized Algorithms and Probabilistic Analysis[M]. New York: Cambridge University Press, 2005.
|
[24] |
BAZZI L M J and MITTER S K. Some randomized code constructions from group actions[J]. IEEE Transactions on Information Theory, 2006, 52(7): 3210–3219. doi: 10.1109/TIT.2006.876244.
|