Citation: | SONG Jiazhen, SHI Zhuoyue, ZHANG Xiaoping, LIU Zhenyu. Radar High-speed Target Tracking via Quick Unscented Kalman Filter[J]. Journal of Electronics & Information Technology, 2025, 47(8): 2703-2713. doi: 10.11999/JEIT250010 |
[1] |
彭锐晖, 郭玮, 孙殿星, 等. 多平台异构信息融合的航空目标跟踪算法[J]. 电子与信息学报, 2024, 46(9): 3619–3628. doi: 10.11999/JEIT240130.
PENG Ruihui, GUO Wei, SUN Dianxing, et al. Airborne target tracking algorithm using multi-platform heterogeneous information fusion[J]. Journal of Electronics & Information Technology, 2024, 46(9): 3619–3628. doi: 10.11999/JEIT240130.
|
[2] |
WANG Shenghua, MEN Chenkai, LI Renxian, et al. A maneuvering extended target tracking IMM algorithm based on second-order EKF[J]. IEEE Transactions on Instrumentation and Measurement, 2024, 73: 8505011. doi: 10.1109/TIM.2024.3418076.
|
[3] |
杨健, 杨文付, 谢晓阳, 等. 基于距离走动效应的SAR运动目标检测算法[J]. 太赫兹科学与电子信息学报, 2018, 16(3): 406–411. doi: 10.11805/TKYDA201803.0406.
YANG Jian, YANG Wenfu, XIE Xiaoyang, et al. Moving target indication algorithm in SAR based on range walk migration[J]. Journal of Terahertz Science and Electronic Information Technology, 2018, 16(3): 406–411. doi: 10.11805/TKYDA201803.0406.
|
[4] |
XU Aichun, ZHANG Ji, LI Qian, et al. The benefits of being smaller: Consistent pattern for climate-induced range shift and morphological difference of three falconiforme species[J]. Avian Research, 2023, 14(1): 100079. doi: 10.1016/j.avrs.2023.100079.
|
[5] |
DENG Tiandi and JIANG Chaoshu. Evaluations of keystone transforms using several interpolation methods[C]. 2011 IEEE CIE International Conference on Radar, Chengdu, China, 2011: 1876–1878. doi: 10.1109/CIE-Radar.2011.6159939.
|
[6] |
张亮, 张翔宇, 王国宏. Keystone变换实现方法研究[J]. 电子学报, 2022, 50(5): 1218–1226. doi: 10.12263/DZXB.20210464.
ZHANG Liang, ZHANG Xiangyu, and WANG Guohong. Research on keystone transform implementation methods[J]. Acta Electronica Sinica, 2022, 50(5): 1218–1226. doi: 10.12263/DZXB.20210464.
|
[7] |
PIGNOL F, COLONE F, and MARTELLI T. Lagrange-polynomial-interpolation-based Keystone transform for a passive radar[J]. IEEE Transactions on Aerospace and Electronic Systems, 2018, 54(3): 1151–1167. doi: 10.1109/TAES.2017.2775924.
|
[8] |
JIANG Wenqi, LIU Hongwei, JIU Bo, et al. Full-dimensional partial-search generalized radon-Fourier transform for high-speed maneuvering target detection[J]. IEEE Transactions on Aerospace and Electronic Systems, 2024, 60(4): 5445–5457. doi: 10.1109/TAES.2024.3393449.
|
[9] |
LI Xiaolong, ZHANG Zerui, YANG Fan, et al. Motion error estimation and coherent integration for high-speed target with airborne bistatic radar[J]. IEEE Transactions on Aerospace and Electronic Systems, 2024: 1–19. doi: 10.1109/TAES.2024.3520537.
|
[10] |
NIU Zhiyong, ZHENG Jibin, SU Tao, et al. Radar high-speed target detection based on improved minimalized windowed RFT[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14: 870–886. doi: 10.1109/JSTARS.2020.3037089.
|
[11] |
LI Xiaolong, CUI Guolong, KONG Lingjiang, et al. Fast Non-searching method for maneuvering target detection and motion parameters estimation[J]. IEEE Transactions on Signal Processing, 2016, 64(9): 2232–2244. doi: 10.1109/TSP.2016.2515066.
|
[12] |
LI Xiaolong, SUN Zhi, YI Wei, et al. Radar detection and parameter estimation of high-speed target based on MART-LVT[J]. IEEE Sensors Journal, 2019, 19(4): 1478–1486. doi: 10.1109/JSEN.2018.2882198.
|
[13] |
JIN Pan, RAO Xuan, ZHU Xiangsheng, et al. Weak target integration detection based on bistatic radar second-order keystone transform[C]. 2019 IEEE International Conference on Signal, Information and Data Processing, Chongqing, China, 2019: 1–6. doi: 10.1109/ICSIDP47821.2019.9173183.
|
[14] |
YANG Jiefang, ZHANG Yunhua, MI Yunpeng, et al. A novel algorithm for maneuvering target coherent integration based on second-order keystone and radon Fourier transform[C]. IET International Radar Conference (IRC 2023), Chongqing, China, 2023: 2458–2463. doi: 10.1049/icp.2024.1472.
|
[15] |
SUN Zhi, LI Xiaolong, CUI Guolong, et al. A fast approach for detection and parameter estimation of maneuvering target with complex motions in coherent radar system[J]. IEEE Transactions on Vehicular Technology, 2021, 70(10): 10278–10292. doi: 10.1109/TVT.2021.3104659.
|
[16] |
HUANG Penghui, XIA Xianggen, LIAO Guisheng, et al. Long-time coherent integration algorithm for radar maneuvering weak target with acceleration rate[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(6): 3528–3542. doi: 10.1109/TGRS.2018.2885508.
|
[17] |
肖培. 地基雷达高速目标检测技术研究[D]. [硕士论文], 电子科技大学, 2019.
XIAO Pei. Research on ground-based radar high-speed target detection technology[D]. [Master dissertation], University of Electronic Science and Technology of China, 2019.
|
[18] |
BASAR T. A new approach to linear filtering and prediction problems[M]. BASAR T. Control Theory: Twenty-Five Seminal Papers. Hoboken: Wiley-IEEE Press, 2001: 167–179. doi: 10.1109/9780470544334.ch9.
|
[19] |
KALMAN R E and BUCY R S. New results in linear filtering and prediction theory[J]. Journal of Basic Engineering, 1961, 83(1): 95–108. doi: 10.1115/1.3658902.
|
[20] |
JULIER S J and UHLMANN J K. New extension of the Kalman filter to nonlinear systems[C]. Signal Processing, Sensor Fusion, and Target Recognition VI, Orlando, USA, 1997: 182–193.
|
[21] |
ARULAMPALAM M S, MASKELL S, GORDON N, et al. A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking[J]. IEEE Transactions on Signal Processing, 2002, 50(2): 174–188. doi: 10.1109/78.978374.
|
[22] |
ARASARATNAM I and HAYKIN S. Cubature Kalman filters[J]. IEEE Transactions on Automatic Control, 2009, 54(6): 1254–1269. doi: 10.1109/TAC.2009.2019800.
|
[23] |
DUNIK J, STRAKA O, SIMANDL M, et al. Random-point-based Filters: Analysis and comparison in target tracking[J]. IEEE Transactions on Aerospace and Electronic Systems, 2015, 51(2): 1403–1421. doi: 10.1109/TAES.2014.130136.
|
[24] |
计忠平, 王相威, 何志伟, 等. 集成全局局部特征交互与角动量机制的端到端多目标跟踪算法[J]. 电子与信息学报, 2024, 46(9): 3703–3712. doi: 10.11999/JEIT240277.
JI Zhongping, WANG Xiangwei, HE Zhiwei, et al. End-to-end multi-object tracking algorithm integrating global local feature interaction and angular momentum mechanism[J]. Journal of Electronics & Information Technology, 2024, 46(9): 3703–3712. doi: 10.11999/JEIT240277.
|
[25] |
程稳, 陈忠碧, 李庆庆, 等. 时空特征对齐的多目标跟踪算法[J]. 光电工程, 2023, 50(6): 230009. doi: 10.12086/oee.2023.230009.
CHENG Wen, CHEN Zhongbi, LI Qingqing, et al. Multiple object tracking with aligned spatial-temporal feature[J]. Opto-Electronic Engineering, 2023, 50(6): 230009. doi: 10.12086/oee.2023.230009.
|
[26] |
刘超军, 段喜萍, 谢宝文. 应用GhostNet卷积特征的ECO目标跟踪算法改进[J]. 激光技术, 2022, 46(2): 239–247. doi: 10.7510/jgjs.issn.1001-3806.2022.02.015.
LIU Chaojun, DUAN Xiping, and XIE Baowen. Improvement of ECO target tracking algorithm based on GhostNet convolution feature[J]. Laser Technology, 2022, 46(2): 239–247. doi: 10.7510/jgjs.issn.1001-3806.2022.02.015.
|
[27] |
吴非, 张建林. 结合全局光流的孪生区域提名网络目标跟踪算法[J]. 半导体光电, 2023, 44(3): 422–428. doi: 10.16818/j.issn1001-5868.2023020401.
WU Fei and ZHANG Jianlin. Siamese region proposal network object tracking algorithm with global optical flow[J]. Semiconductor Optoelectronics, 2023, 44(3): 422–428. doi: 10.16818/j.issn1001-5868.2023020401.
|