Citation: | QIU Gongan, LIU Yongsheng, ZHANG Guoan, LIU Min. Energy Characteristic Map Based Resource Allocation Algorithm for High-density V2V Communications[J]. Journal of Electronics & Information Technology, 2025, 47(8): 2642-2651. doi: 10.11999/JEIT250004 |
[1] |
GU Bo, CHEN Weixiang, ALAZAB M, et al. Multiagent reinforcement learning-based semi-persistent scheduling scheme in C-V2X mode 4[J]. IEEE Transactions on Vehicular Technology, 2022, 71(11): 12044–12056. doi: 10.1109/TVT.2022.3189019.
|
[2] |
SEIFHASHEMI F, HAJRASOULIHA A, and GHAHFAROKHI B S. Resource-aware multi-hop routing protocol for unicast cellular V2V communications[J]. IEEE Access, 2025, 13: 6584–6593. doi: 10.1109/ACCESS.2025.3526697.
|
[3] |
GARCIA M H C, MOLINA-GALAN A, BOBAN M, et al. A tutorial on 5G NR V2X communications[J]. IEEE Communications Surveys & Tutorials, 2021, 23(3): 1972–2026. doi: 10.1109/COMST.2021.3057017.
|
[4] |
王巨震, 江昊, 陈琪美, 等. C-V2X资源分配方法研究综述[J]. 太赫兹科学与电子信息学报, 2022, 20(1): 1–7. doi: 10.11805/tkyda2021145.
WANG Juzhen, JIANG Hao, CHEN Qimei, et al. Summary of research on C-V2X resource allocation method[J]. Journal of Terahertz Science and Electronic Information Technology, 2022, 20(1): 1–7. doi: 10.11805/tkyda2021145.
|
[5] |
JEON Y and KIM H. An explicit reservation-augmented resource allocation scheme for C-V2X sidelink mode 4[J]. IEEE Access, 2020, 8: 147241–147255. doi: 10.1109/ACCESS.2020.3015549.
|
[6] |
李一兵, 王宁馨, 吕威. 蜂窝车联网中基于服务异构性的V2V通信资源分配算法研究[J]. 电子与信息学报, 2023, 45(1): 235–242. doi: 10.11999/JEIT211160.
LI Yibing, WANG Ningxin, and LÜ Wei. Research on resource allocation algorithm based on service heterogeneity in V2V communication in C-V2X[J]. Journal of Electronics & Information Technology, 2023, 45(1): 235–242. doi: 10.11999/JEIT211160.
|
[7] |
BANITALEBI N, AZMI P, MOKARI N, et al. Distributed learning-based resource allocation for self-organizing C-V2X communication in cellular networks[J]. IEEE Open Journal of the Communications Society, 2022, 3: 1719–1736. doi: 10.1109/OJCOMS.2022.3211340.
|
[8] |
PARVINI M, SCHULZ P, and FETTWEIS G. Resource allocation in V2X networks: From classical optimization to machine learning-based solutions[J]. IEEE Open Journal of the Communications Society, 2024, 5: 1958–1974. doi: 10.1109/OJCOMS.2024.3380509.
|
[9] |
陈发堂, 张若凡. 可重构智能反射面辅助的车联网资源分配算法研究[J]. 通信学报, 2023, 44(9): 70–78. doi: 10.11959/j.issn.1000−436x.2023145.
CHEN Fatang and ZHANG Ruofan. Research on IoV resource allocation algorithm assisted by reconfigurable intelligent surface[J]. Journal on Communications, 2023, 44(9): 70–78. doi: 10.11959/j.issn.1000−436x.2023145.
|
[10] |
许耀华, 王慧平, 王贵竹, 等. 基于图着色和三维匹配的车联网资源分配算法[J]. 系统工程与电子技术, 2023, 45(3): 869–875. doi: 10.12305/j.issn.1001-506X.2023.03.29.
XU Yaohua, WANG Huiping, WANG Guizhu, et al. Resource allocation algorithm for internet of vehicles based on graph coloring and three-dimensional matching[J]. Systems Engineering and Electronics, 2023, 45(3): 869–875. doi: 10.12305/j.issn.1001-506X.2023.03.29.
|
[11] |
JI Baofeng, DONG Bingyi, LI Da, et al. Optimization of resource allocation for V2X security communication based on multi-agent reinforcement learning[J]. IEEE Transactions on Vehicular Technology, 2025, 74(2): 1849–1861. doi: 10.1109/TVT.2023.3340424.
|
[12] |
JI Maoxin, WU Qiong, FAN Pingyi, et al. Graph neural networks and deep reinforcement learning-based resource allocation for V2X communications[J]. IEEE Internet of Things Journal, 2025, 12(4): 3613–3628. doi: 10.1109/JIOT.2024.3469547.
|
[13] |
YACHEUR B Y, AHMED T, and MOSBAH M. Efficient DRL-based selection strategy in hybrid vehicular networks[J]. IEEE Transactions on Network and Service Management, 2023, 20(3): 2400–2411. doi: 10.1109/TNSM.2023.3300653.
|
[14] |
ZHANG Minglong, DOU Yi, MAROJEVIC V, et al. FAQ: A fuzzy-logic-assisted Q-learning model for resource allocation in 6G V2X[J]. IEEE Internet of Things Journal, 2024, 11(2): 2472–2489. doi: 10.1109/JIOT.2023.3294279.
|
[15] |
LI Pengfei and HUANG Xinlin. Cooperative spectrum sensing approach in C-V2X based on multi-agent reinforcement learning[C]. Proceedings of 2023 17th International Conference on Telecommunications, Graz, Austria, 2023: 1–6. doi: 10.1109/ConTEL58387.2023.10199063.
|
[16] |
WANG Junhan, HE He, CHA J, et al. Multi-agent reinforcement learning for efficient resource allocation in Internet of Vehicles[J]. Electronics, 2025, 14(1): 192. doi: 10.3390/electronics14010192.
|
[17] |
WIJESIRI G P N B A, HAAPOLA J, and SAMARASINGHE T. A discrete-time Markov chain based comparison of the MAC layer performance of C-V2X Mode 4 and IEEE 802.11p[J]. IEEE Transactions of Communications, 2021, 69(4): 2505–2517. doi: 10.1109/TCOMM.2020.3044340.
|
[18] |
LAGEN S, WANUGA K, ELKOTBY H, et al. New radio physical layer abstraction for system-level simulations of 5G networks[C]. Proceedings of the ICC 2020-2020 IEEE International Conference on Communications, Dublin, Ireland, 2020: 1–7. doi: 10.1109/ICC40277.2020.9149444.
|